Lagrange inversion theorem: Difference between revisions

Content deleted Content added
Line 54:
We can use Cauchy Integral theorem:
 
:<math>
f^{-1}(z)
=
Line 63:
and substitute:
 
:<math>
\xi=f(\omega)
</math>
 
:<math>
d\xi=f'(\omega)d\omega
</math>
 
:<math>
f(C)\rightarrow C
</math>
 
:<math>
f^{-1}(z)
=
Line 84:
using geometric series:
 
:<math>
\frac{1}{f(\omega) - z}
=
Line 97:
</math>
 
:<math>
f^{-1}(z)
=
Line 137:
</math> we get:
 
:<math>
f^{-1}(z)
=
Line 150:
by residue theorem:
 
:<math>
f^{-1}(z)
=
Line 164:
finally:
 
:<math>
f^{-1}(z)
=
Line 177:
 
 
''<em>In fact, integration by parts doesn't work for:''</em>
 
:<math>
n=0\rightarrow
\frac{1}{2\pi i}
Line 191:
</math>
 
''<em>Fortunately, writing the integral as a residue in the last line fixes the problem.''</em>
 
==Applications==