Content deleted Content added
Line 54:
We can use Cauchy Integral theorem:
:<math>
f^{-1}(z)
=
Line 63:
and substitute:
:<math>
\xi=f(\omega)
</math>
:<math>
d\xi=f'(\omega)d\omega
</math>
:<math>
f(C)\rightarrow C
</math>
:<math>
f^{-1}(z)
=
Line 84:
using geometric series:
:<math>
\frac{1}{f(\omega) - z}
=
Line 97:
</math>
:<math>
f^{-1}(z)
=
Line 137:
</math> we get:
:<math>
f^{-1}(z)
=
Line 150:
by residue theorem:
:<math>
f^{-1}(z)
=
Line 164:
finally:
:<math>
f^{-1}(z)
=
Line 177:
:<math>
n=0\rightarrow
\frac{1}{2\pi i}
Line 191:
</math>
==Applications==
|