Average-case complexity: Difference between revisions

Content deleted Content added
DistNP-complete problems: specify distribution.
Line 60:
The average-case analogue to {{math|'''NP'''}}-completeness is {{math|'''distNP'''}}-completeness. A distributional problem {{math|(''L&prime;'', ''D&prime;'')}} is {{math|'''distNP'''}}-complete if {{math|(''L&prime;'', ''D&prime;'')}} is in {{math|'''distNP'''}} and for every {{math|(''L'', ''D'')}} in {{math|'''distNP'''}}, {{math|(''L'', ''D'')}} is average-case reducible to {{math|(''L&prime;'', ''D&prime;'')}}.<ref name="ab09" />
 
An example of a {{math|'''distNP'''}}-complete problem is the Bounded Halting Problem, {{math|({{mvar|BH}},''D'')}} (for any P-computable ''D'') defined as follows:
 
<math>BH = \{(M, x, 1^t) : M \text{ is a non-deterministic Turing machine that accepts } x \text{ in} \leq t \text{ steps}\}</math><ref name="ab09"/>