A '''diffusionless transformation''', commonly known as '''displacive transformation''', denote [[solid-state chemistry|solid-state]] alterations in the [[crystal structure]] that do not hinge on the diffusion of atoms across extensive distances. Rather, these transformations manifest as a result of synchronized shifts in atomic positions, wherein atoms undergo displacements of distances smaller than the spacing between adjacent atoms, all while preserving their relative arrangement. An exemplar of such a phenomenon is the martensitic transformation, a notable occurrence observed in the context of steel materials. The term "[[martensite]]" was originally coined to describe the rigid and finely dispersed constituent that emerges in steels subjected to rapid cooling. Subsequent investigations revealed that materials beyond ferrous alloys, such as non-ferrous alloys and ceramics, can also undergo diffusionless transformations. Consequently, the term "martensite" has evolved to encompass the resultant product arising from such transformations in a more inclusive manner. In the context of diffusionless transformations, a cooperative and homogeneous movement occurs, leading to a modification in the crystal structure during a [[Phase transition|phase change]]. These movements are small, usually less than their interatomic distances, and the neighbors of an atom remain close. The systematic movement of large numbers of atoms led to some to refer to these as ''military'' transformations in contrast to ''civilian'' diffusion-based phase changes, initially by [[Frederick Charles Frank]] and [[John Wyrill Christian]].<ref>D.A. Porter and K.E. Easterling, Phase transformations in metals and alloys, ''Chapman & Hall'', 1992, p.172 {{ISBN|0-412-45030-5}}</ref><ref>{{cite journal |author=西山 善次 |date=1967 |title=マルテンサイトの格子欠陥 |script-title=ja:... |url=https://www.jstage.jst.go.jp/article/materia1962/6/7/6_7_497/_article/-char/ja |url-status=live |journal=日本金属学会会報 |language=Japanese |publisher=日本金属学会 |volume=6 |issue=7 |pages=497–506 |doi=10.2320/materia1962.6.497 |issn=1884-5835 |archive-url=https://web.archive.org/web/20230617075122/https://www.jstage.jst.go.jp/article/materia1962/6/7/6_7_497/_article/-char/ja |archive-date=2023-06-17 |via=J-STAGE |doi-access=free}}</ref>
The most commonly encountered transformation of this type is the [[Adolf Martens|martensitic]] transformation which, while probably the most studied, is only one subset of non-diffusional transformations. The martensitic transformation in [[steel]] represents the most economically significant example of this category of phase transformations. However, an increasing number of alternatives, such as [[shape memory alloy]]s, are becoming more important as well.