Content deleted Content added
→Diagonalization in broader context: there's a general problem in the treatment of the phrase "naive set theory" in Wikipedia; it can mean theories subject to the antinomies, or it can just mean non-formalized set theory. Better to avoid the term when not required |
m Removing link(s) Wikipedia:Articles for deletion/Classical mathematics closed as delete (XFDcloser) |
||
Line 101:
With equality defined as the existence of a bijection between their underlying sets, Cantor also defines binary predicate of cardinalities <math>|S|</math> and <math>|T|</math> in terms of the [[Cardinality#Comparing_sets|existence of injections]] between <math>S</math> and <math>T</math>. It has the properties of a [[preorder]] and is here written "<math>\le</math>". One can embed the naturals into the binary sequences, thus proving various ''injection existence'' statements explicitly, so that in this sense <math>|{\mathbb N}|\le|2^{\mathbb N}|</math>, where <math>2^{\mathbb N}</math> denotes the function space <math>{\mathbb N}\to\{0,1\}</math>. But following from the argument in the previous sections, there is ''no surjection'' and so also no bijection, i.e. the set is uncountable. For this one may write <math>|{\mathbb N}|<|2^{\mathbb N}|</math>, where "<math><</math>" is understood to mean the existence of an injection together with the proven absence of a bijection (as opposed to alternatives such as the negation of Cantor's preorder, or a definition in terms of [[Von Neumann cardinal assignment|assigned]] [[ordinal numbers|ordinals]]). Also <math>|S|<|{\mathcal P}(S)|</math> in this sense, as has been shown, and at the same time it is the case that <math>\neg(|{\mathcal P}(S)|\le|S|)</math>, for all sets <math>S</math>.
Assuming the [[law of excluded middle]], [[characteristic functions]] surject onto powersets, and then <math>|2^S|=|{\mathcal P}(S)|</math>. So the uncountable <math>2^{\mathbb N}</math> is also not enumerable and it can also be mapped onto <math>{\mathbb N}</math>.
Cantor's result then also implies that the notion of the [[set of all sets]] is inconsistent: If <math>S</math> were the set of all sets, then <math>{\mathcal P}(S)</math> would at the same time be bigger than <math>S</math> and a subset of <math>S</math>.
|