Problemi irrisolti in matematica: differenze tra le versioni
Contenuto cancellato Contenuto aggiunto
m org. |
Corretto: "le soluzioni" |
||
Riga 5:
I ''[[Problema aperto|problemi aperti]]'' hanno sempre rivestito una grande importanza in matematica, contribuendo a segnarne la storia, dal momento che le domande poste in questa categoria di problemi "a volte [...] illuminano sviluppi futuri di questa disciplina"<ref name="C. Procesi"/>. Ma l'efficacia di questa precognizione prospettica è spesso contraddetta da una constatazione che proviene proprio da considerazioni storiche e retrospettive: la [[storia della matematica]], infatti, insegna come la soluzione di problemi aperti sia avvenuta, molto spesso, attraverso approcci e sviluppi inattesi e imprevedibili all'epoca della loro formulazione, o, a volte (come nel caso dell'[[ultimo teorema di Fermat]], nato in un contesto che si potrebbe definire di [[aritmetica]] "[[Eulero|euleriana]]"), attraverso collocazione in un diverso ambito specialistico<ref name="C. Procesi"/>.
Sono numerosi gli esempi di questa inefficacia predittiva sulle future strade intraprese dai progressi del sapere matematico: tra questi, vi sono le
Molto feconda si è mostrata, poi, in alcuni casi, una soluzione di tipo "negativo", attraverso la dimostrazione dell'impossibilità del risultato prospettato dal quesito. Ne sono esempi notevoli i due grandi problemi aperti lasciati in eredità dalla [[matematica greca]]: la [[duplicazione del cubo]] e l'indipendenza del [[quinto postulato di Euclide]] (il cosiddetto "assioma delle parallele") nell'ambito dello [[Postulati di Euclide|schema di postulati geometrici sistematizzati]] negli ''[[Elementi di Euclide|Elementi]]'' di [[Euclide]]<ref name="C. Procesi"/>. La soluzione di quest'ultimo ha richiesto la scoperta che esistono le cosiddette [[geometrie non euclidee]], nel quale il quinto postulato non è soddisfatto, che hanno aperto nuove strade allo studio e alla comprensione della matematica, con lo studio delle geometrie in base al loro [[gruppo di simmetria|gruppo di simmetrie]]<ref name="C. Procesi"/>.
|