Content deleted Content added
m →Misconceptions, challenges, and prospects: disambiguation no longer needed; target is no longer a disambiguation page, removed: {{disambiguation needed|date=April 2024}} |
GreenC bot (talk | contribs) Move 51 urls. Wayback Medic 2.5 per WP:URLREQ#ieee.org |
||
Line 8:
==Optical components for binary digital computer==
The fundamental building block of modern electronic computers is the [[transistor]]. To replace electronic components with optical ones, an equivalent [[optical transistor]] is required. This is achieved by [[crystal optics]] (using materials with a [[Refractive index#Nonlinearity|non-linear refractive index]]).<ref>{{Cite web |title=These Optical Gates Offer Electronic Access - IEEE Spectrum |url=https://spectrum.ieee.org/optical-computing-picosecond-gates |access-date=2022-12-30 |website=
| country = US
| number = 4382660
Line 100:
[[Yoshihisa Yamamoto (scientist)|Yoshihisa Yamamoto]]'s lab at [[Stanford University|Stanford]] pioneered building Ising machines using photons. Initially Yamamoto and his colleagues built an Ising machine using lasers, mirrors, and other optical components commonly found on an [[optical table]].<ref name="courtland" /><ref name="cartlidge">{{Cite news |first=Edwin |last=Cartlidge |url=http://physicsworld.com/cws/article/news/2016/oct/31/new-ising-machine-computers-are-taken-for-a-spin |title=New Ising-machine computers are taken for a spin |date=31 October 2016 |work=Physics World}}</ref>
Later a team at [[Hewlett Packard Labs]] developed [[photonic chip]] design tools and used them to build an Ising machine on a single chip, integrating 1,052 optical components on that single chip.<ref name="courtland">{{Cite news |first=Rachel |last=Courtland |url=https://spectrum.ieee.org
==Industry==
|