Content deleted Content added
No edit summary |
Michaelmalak (talk | contribs) |
||
Line 1:
{{Short description|Methods in artificial intelligence research}}
{{Artificial intelligence|Approaches}}
In [[artificial intelligence]], '''symbolic artificial intelligence''' is the term for the collection of all methods in artificial intelligence research that are based on high-level [[physical symbol systems hypothesis|symbolic]] (human-readable) representations of problems, [[Formal logic|logic]] and [[search algorithm|search]].<ref>{{Cite journal|last1=Garnelo|first1=Marta|last2=Shanahan|first2=Murray|date=2019-10-01|title=Reconciling deep learning with symbolic artificial intelligence: representing objects and relations|journal=Current Opinion in Behavioral Sciences|language=en|volume=29|pages=17–23|doi=10.1016/j.cobeha.2018.12.010|s2cid=72336067 |doi-access=free|hdl=10044/1/67796|hdl-access=free}}</ref> Symbolic AI used tools such as [[logic programming]], [[production (computer science)|production rules]], [[semantic nets]] and [[frame (artificial intelligence)|frames]], and it developed applications such as [[knowledge-based systems]] (in particular, [[expert systems]]), [[symbolic mathematics]], [[automated theorem provers]], [[ontologies]], the [[semantic web]], and [[automated planning and scheduling]] systems. The Symbolic AI paradigm led to seminal ideas in [[Artificial intelligence#Search and optimization|search]], [[
Symbolic AI was the dominant [[paradigm]] of AI research from the mid-1950s until the mid-1990s.{{sfn|Kolata|1982}} Researchers in the 1960s and the 1970s were convinced that symbolic approaches would eventually succeed in creating a machine with [[artificial general intelligence]] and considered this the ultimate goal of their field.{{Citation needed|date=March 2024}} An early boom, with early successes such as the [[Logic Theorist]] and [[Arthur Samuel (computer scientist)|Samuel]]'s [[Arthur Samuel (computer scientist)|Checkers Playing Program]], led to unrealistic expectations and promises and was followed by the First [[AI winter|AI Winter]] as funding dried up.{{sfn|Kautz|2022|pp=107-109}}{{sfn|Russell |Norvig|2021|p=19}} A second boom (1969–1986) occurred with the rise of expert systems, their promise of capturing corporate expertise, and an enthusiastic corporate embrace.{{sfn|Russell |Norvig|2021|pp=22-23}}{{sfn|Kautz|2022|pp=109-110}} That boom, and some early successes, e.g., with [[XCON]] at [[Digital Equipment Corporation|DEC]], was followed again by later disappointment.{{sfn|Kautz|2022|pp=109-110}} Problems with difficulties in knowledge acquisition, maintaining large knowledge bases, and brittleness in handling out-of-___domain problems arose. Another, second, AI Winter (1988–2011) followed.{{sfn|Kautz|2022|p=110}} Subsequently, AI researchers focused on addressing underlying problems in handling uncertainty and in knowledge acquisition.{{sfn|Kautz|2022|pp=110-111}} Uncertainty was addressed with formal methods such as [[hidden Markov model]]s, [[Bayesian reasoning]], and [[statistical relational learning]].{{sfn|Russell |Norvig|2021|p=25}}{{sfn|Kautz|2022|p=111}} Symbolic machine learning addressed the knowledge acquisition problem with contributions including [[Version space learning|Version Space]], [[Leslie Valiant|Valiant]]'s [[Probably approximately correct learning|PAC learning]], [[Ross Quinlan|Quinlan]]'s [[ID3 algorithm|ID3]] [[decision-tree]] learning, [[Case-based reasoning|case-based learning]], and [[inductive logic programming]] to learn relations.{{sfn|Kautz|2020|pp=110-111}}
|