Low-gravity process engineering: Difference between revisions

Content deleted Content added
Line 46:
The lack of natural convection in low-gravity environments poses significant challenges for heat transfer processes:
 
#Reduced convective heat transfer: Without buoyancy-driven flows, heat transfer becomes primarily dependent on conduction and [[radiation]], potentially leading to localized hot spots and thermal management issues.<ref name=":9">{{Cite journal |last=Berto |first=Arianna |last2=Azzolin |first2=Marco |last3=Bortolin |first3=Stefano |last4=Miscevic |first4=Marc |last5=Lavieille |first5=Pascal |last6=Del Col |first6=Davide |date=2023-04-04 |title=Condensation heat transfer in microgravity conditions |url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10073138/ |journal=NPJ Microgravity |volume=9 |pages=32 |doi=10.1038/s41526-023-00276-1 |issn=2373-8065 |pmid=37015948}}</ref>
# '''Boiling and condensation''': These [[Phase transition|phase change]] processes behave differently in microgravity, affecting cooling systems and thermal management strategies.<ref>{{Citation |last=Straub |first=Johannes |title=Boiling Heat Transfer and Bubble Dynamics in Microgravity |date=2001-01-01 |work=Advances in Heat Transfer |volume=35 |pages=57–172 |editor-last=Hartnett |editor-first=James P. |url=https://www.sciencedirect.com/science/article/pii/S0065271701800204 |access-date=2024-08-08 |publisher=Elsevier |doi=10.1016/s0065-2717(01)80020-4 |editor2-last=Irvine |editor2-first=Thomas F. |editor3-last=Cho |editor3-first=Young I. |editor4-last=Greene |editor4-first=George A.}}</ref>
# '''Temperature gradients''': The absence of natural mixing can result in sharp [[temperature gradient]]s, impacting reaction kinetics and material processing.<ref>{{Cite book |url=https://doi.org/10.1016/B978-0-08-044508-3.X5000-2 |title=Fluids, Materials and Microgravity |date=2004 |publisher=Elsevier |isbn=978-0-08-044508-3 |doi=10.1016/b978-0-08-044508-3.x5000-2}}</ref>