Content deleted Content added
No edit summary |
added prepositions |
||
Line 1:
{{Short description|Field of linguistics and computer science}}{{More citations needed|date=May 2024}}{{Other uses|NLP (disambiguation){{!}}NLP}}{{About|natural language processing done by computers|the natural language processing done by the human brain|Language processing in the brain}}
Major tasks in natural language processing are [[speech recognition]], [[text classification]], [[natural-language understanding]], and [[natural language generation|natural-language generation]].
Line 12 ⟶ 11:
The premise of symbolic NLP is well-summarized by [[John Searle]]'s [[Chinese room]] experiment: Given a collection of rules (e.g., a Chinese phrasebook, with questions and matching answers), the computer emulates natural language understanding (or other NLP tasks) by applying those rules to the data it confronts.
* '''1950s''': The [[Georgetown-IBM experiment|Georgetown experiment]] in 1954 involved fully [[automatic translation]] of more than sixty Russian sentences into English. The authors claimed that within three or five years, machine translation would be a solved problem.<ref>{{cite web|author=Hutchins, J.|year=2005|url=http://www.hutchinsweb.me.uk/Nutshell-2005.pdf|title=The history of machine translation in a nutshell}}{{self-published source|date=December 2013}}</ref> However, real progress was much slower, and after the [[ALPAC|ALPAC report]] in 1966, which found that ten
* '''1960s''': Some notably successful natural language processing systems developed in the 1960s were [[SHRDLU]], a natural language system working in restricted "[[blocks world]]s" with restricted vocabularies, and [[ELIZA]], a simulation of a [[Rogerian psychotherapy|Rogerian psychotherapist]], written by [[Joseph Weizenbaum]] between 1964 and 1966. Using almost no information about human thought or emotion, ELIZA sometimes provided a startlingly human-like interaction. When the "patient" exceeded the very small knowledge base, ELIZA might provide a generic response, for example, responding to "My head hurts" with "Why do you say your head hurts?". [[Ross Quillian]]'s successful work on natural language was demonstrated with a vocabulary of only ''twenty'' words, because that was all that would fit in a computer memory at the time.<ref>{{Harvnb|Crevier|1993|pp=146–148}}, see also {{Harvnb|Buchanan|2005|p=56}}: "Early programs were necessarily limited in scope by the size and speed of memory"</ref>
Line 20 ⟶ 19:
=== Statistical NLP (1990s–2010s) ===
Up until the 1980s, most natural language processing systems were based on complex sets of hand-written rules. Starting in the late 1980s, however, there was a revolution in natural language processing with the introduction of [[machine learning]] algorithms for language processing. This was due to both the steady increase in computational power (see [[Moore's law]]) and the gradual lessening of the dominance of [[Noam Chomsky|Chomskyan]] theories of linguistics (e.g. [[transformational grammar]]), whose theoretical underpinnings discouraged the sort of [[corpus linguistics]] that underlies the machine-learning approach to language processing.<ref>Chomskyan linguistics encourages the investigation of "[[corner case]]s" that stress the limits of its theoretical models (comparable to [[pathological (mathematics)|pathological]] phenomena in mathematics), typically created using [[thought experiment]]s, rather than the systematic investigation of typical phenomena that occur in real-world data, as is the case in [[corpus linguistics]]. The creation and use of such [[text corpus|corpora]] of real-world data is a fundamental part of machine-learning algorithms for natural language processing. In addition, theoretical underpinnings of Chomskyan linguistics such as the so-called "[[poverty of the stimulus]]" argument entail that general learning algorithms, as are typically used in machine learning, cannot be successful in language processing. As a result, the Chomskyan paradigm discouraged the application of such models to language processing.</ref>
*'''1990s''': Many of the notable early successes
*'''2000s''': With the growth of the web, increasing amounts of raw (unannotated) language data
=== Neural NLP (present) ===
|