Content deleted Content added
m unpiped links using script |
review: WP:SOB |
||
Line 30:
[[PowerPC 604]] (1995) was the first single-chip processor with [[execution unit]]-level reordering, as three out of its six units each had a two-entry reservation station permitting the newer entry to execute before the older. The reorder buffer capacity is 16 instructions. A four-entry load queue and a six-entry store queue track the reordering of loads and stores upon cache misses.<ref>{{cite journal |last1=Song |first1=S. Peter |last2=Denman |first2=Marvin |last3=Chang |first3=Joe |title=The PowerPC 604 RISC microprocessor |journal=IEEE Micro |date=October 1994 |volume=14 |issue=5 |page=8 |doi=10.1109/MM.1994.363071 |s2cid=11603864 |url=https://www.complang.tuwien.ac.at/andi/tuonly/SkriptPPC604.pdf}}</ref> [[HAL SPARC64]] (1995) exceeded the reordering capacity of the [[ES/9000]] model 900 by having three 8-entry reservation stations for integer, floating-point, and [[address generation unit]], and a 12-entry reservation station for load/store, which permits greater reordering of cache/memory access than preceding processors. Up to 64 instructions can be in a reordered state at a time.<ref>{{cite web |title=SPARC64+: HAL's Second Generation 64-bit SPARC Processor |url=https://old.hotchips.org/wp-content/uploads/hc_archives/hc07/2_Mon/HC7.S3/HC7.3.2.pdf |website=[[Hot Chips]]}}</ref><ref>{{cite web |url=https://www.irisa.fr/caps/projects/TechnologicalSurvey/micro/PI-957-html/section2_8_7.html |website=[[Research Institute of Computer Science and Random Systems]] |title=Le Sparc64 |language=French}}</ref> [[Pentium Pro]] (1995) introduced a ''[[reservation station|unified reservation station]]'', which at the 20 micro-OP capacity permitted very flexible reordering, backed by a 40-entry reorder buffer. Loads can be reordered ahead of both loads and stores.<ref>{{cite web |last1=Gwennap |first1=Linley |title=Intel's P6 Uses Decoupled Superscalar Design |url=http://www.cs.cmu.edu/afs/cs/academic/class/15213-f01/docs/mpr-p6.pdf |website=[[Microprocessor Report]] |date=16 February 1995}}</ref>
The practically attainable [[instructions per cycle|per-cycle rate of execution]] rose further as full out-of-order execution was further adopted by [[Silicon Graphics|SGI]]/[[MIPS Technologies|MIPS]] ([[R10000]]) and [[Hewlett-Packard|HP]] [[PA-RISC]] ([[PA-8000]]) in 1996. The same year [[Cyrix 6x86]] and [[AMD K5]] brought advanced reordering techniques into mainstream personal computers. Since [[DEC Alpha]] gained out-of-order execution in 1998 ([[Alpha 21264]]), the top-performing out-of-order processor cores have been unmatched by in-order cores other than [[Hewlett-Packard|HP]]/[[Intel]] [[Itanium 2]] and [[IBM POWER6]], though the latter had an out-of-order [[floating-point unit]].<ref>Le, Hung Q. et al. {{cite journal |title=IBM POWER6 microarchitecture |journal=IBM Journal of Research and Development |date=November 2007 |volume=51 |issue=6 |url=https://course.ece.cmu.edu/~ece742/f12/lib/exe/fetch.php?media=le_power6.pdf}}</ref> The other high-end in-order processors fell far behind, namely [[Sun Microsystems|Sun]]'s [[UltraSPARC III]]/[[UltraSPARC IV|IV]], and IBM's [[mainframe]]s which had lost the out-of-order execution capability for the second time, remaining in-order into the [[IBM z10|z10]] generation. Later big in-order processors were focused on multithreaded performance, but eventually the [[SPARC T series]] and [[Xeon Phi]] changed to out-of-order execution in 2011 and 2016 respectively.{{cn|reason=No mention of out-of-order execution in either linked article.|date=July 2024}}
Almost all processors for phones and other lower-end applications remained in-order until
== Basic concept ==
|