Content deleted Content added
m →Matrices for simple optical components: {{math}}/{{mvar}} for simple inline maths |
{{math}}/{{mvar}} for inline maths; clean up and check references/cites; format table with scope="col"/"row" for accessibility |
||
Line 1:
{{Short description|Ray tracing technique}}
{{use dmy dates|date= August 2024}}
'''Ray transfer matrix analysis''' (also known as '''ABCD matrix analysis''') is a mathematical form for performing [[Ray tracing (physics)|ray tracing]] calculations in sufficiently simple problems which can be solved considering only paraxial rays. Each optical element (surface, interface, mirror, or beam travel) is described by a {{nowrap|2 × 2}} '''ray transfer [[matrix (mathematics)|matrix]]''' which operates on a [[vector space|vector]] describing an incoming [[ray (optics)|light ray]] to calculate the outgoing ray. Multiplication of the successive matrices thus yields a concise ray transfer matrix describing the entire optical system. The same mathematics is also used in [[accelerator physics]] to track particles through the magnet installations of a [[particle accelerator]], see [[electron optics]].
This technique, as described below, is derived using the ''[[paraxial approximation]]'', which requires that all ray directions (directions normal to the wavefronts) are at small angles {{mvar|θ}} relative to the [[optical axis]] of the system, such that the approximation {{math|1=sin ''θ'' ≈ ''θ''}} remains valid. A small {{mvar|θ}} further implies that the transverse extent of the ray bundles ({{mvar|x}} and {{mvar|y}}) is small compared to the length of the optical system (thus "paraxial"). Since a decent imaging system where this is {{em|not}} the case for all rays must still focus the paraxial rays correctly, this matrix method will properly describe the positions of focal planes and magnifications, however [[Optical aberration|aberrations]] still need to be evaluated using full [[Ray tracing (physics)#Optical design|ray-tracing]] techniques.<ref>Extension of matrix methods to tracing (non-paraxial) meridional rays is
== Matrix definition ==
Line 21 ⟶ 23:
As a result, if the input and output planes are located within the same medium, or within two different media which happen to have identical indices of refraction, then the determinant of {{math|'''M'''}} is simply equal to 1.
▲}}</ref> for the ray vectors can be employed. Instead of using {{math|1= ''θ'' ≈ sin ''θ''}}, the second element of the ray vector is {{math|1= ''n'' sin ''θ''}}, which is proportional not to the ray angle ''per se'' but to the transverse component of the [[wave vector]].
This alters the ABCD matrices given in the table below where refraction at an interface is involved.
Line 55 ⟶ 49:
== Eigenvalues ==
A ray transfer matrix can be regarded as a [[linear canonical transformation]]. According to the eigenvalues of the optical system, the system can be classified into several classes.
<math display="block"> \begin{bmatrix}x_2 \\ \theta_2\end{bmatrix} = \begin{bmatrix} A & B \\ C & D \end{bmatrix} \begin{bmatrix}x_1 \\ \theta_1\end{bmatrix}
=\mathbf{T}\mathbf{v} .</math>
Line 101 ⟶ 95:
|-
| Reflection from a flat mirror
| align="center" | <math> \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} </math
| Valid for flat mirrors oriented at any angle to the incoming beam. Both the ray and the optic axis are reflected equally, so there is no net change in slope or position.
|-
Line 126 ⟶ 120:
| Single prism
| align="center" | <math> \begin{pmatrix} k & \frac{d}{nk} \\ 0 & \frac{1}{k} \end{pmatrix} </math>
| <math>k = (\cos\psi / \cos\phi)</math> is the [[beam expander|beam expansion]] factor, where {{mvar|ϕ}} is the angle of incidence, {{mvar|ψ}} is the angle of refraction, {{mvar|d}} = prism path length, {{mvar|n}} = refractive index of the prism material. This matrix applies for orthogonal beam exit.<ref name=TLO>{{
|-
Line 135 ⟶ 129:
== Relation between geometrical ray optics and wave optics ==
The theory of [[Linear canonical transformation]] implies the relation between ray transfer matrix ([[geometrical optics]]) and wave optics.
{| class="wikitable plainrowheaders"
|-
!Matrix in geometrical optics▼
! scope="col" style="max-width: 10em;" | Element
!Operator in wave optics▼
▲! scope="col" style="max-width: 8em;" | Matrix in geometrical optics
▲! scope="col" | Operator in wave optics
! scope="col" | Remarks
|-
! scope="row" | Scaling
| style="text-align: center;" | <math>\begin{pmatrix} b^{-1} & 0\\ 0 & b\end{pmatrix} </math>
|<math>\mathcal{V}[b] u(x)=u(b x)</math>
|
|-
! scope="row" | Quadratic phase factor
| style="text-align: center;" | <math>\begin{pmatrix} 1 & 0\\ c & 1 \end{pmatrix} </math>
|<math>Q[c]=\exp i \frac{k_{0}}{2} c x^{2}</math>
|<math>k_0</math>: wave number
|-
! scope="row" | Fresnel free-space-propagation operator
| style="text-align: center;" | <math>\begin{pmatrix} 1 & d\\ 0 & 1 \end{pmatrix} </math>
|<math>\mathcal{R}[d]\left\{U\left(x_{1}\right)\right\}=\frac{1}{\sqrt{i \lambda d}} \int_{-\infty}^{\infty} U\left(x_{1}\right) e^{i \frac{k}{2 d}\left(x_{2}-x_{1}\right)^{2}} d x_1 </math>
|<math>x_1 </math>: coordinate of the source
<math>x_2 </math>: coordinate of the goal
|-
! scope="row" | Normalized Fourier-transform operator
| style="text-align: center;" | <math>\begin{pmatrix} 0 & 1\\ -1 & 0 \end{pmatrix} </math>
|<math>\mathcal{F}=\left(i \lambda_{0}\right)^{-1 / 2} \int_{-\infty}^{\infty} d x\left[\exp \left(i k_{0} p x\right)\right] \ldots </math>
|
Line 223 ⟶ 219:
== Resonator stability ==
RTM analysis is particularly useful when modeling the behavior of light in [[optical resonator]]s, such as those used in lasers. At its simplest, an optical resonator consists of two identical facing mirrors of 100% [[reflectivity]] and radius of [[curvature]]
<math display="block">\mathbf{M} =\mathbf{L}\mathbf{S} = \begin{pmatrix} 1 & d \\ \frac{-1}{f} & 1-\frac{d}{f} \end{pmatrix} .</math>
{{abbr|RTM}} analysis can now be used to determine the ''stability'' of the waveguide (and equivalently, the resonator). That is, it can be determined under what conditions light traveling down the waveguide will be periodically refocused and stay within the waveguide. To do so, we can find all the "eigenrays" of the system: the input ray vector at each of the mentioned sections of the waveguide times a real or complex factor
<math display="block"> \mathbf{M} \begin{bmatrix}x_1 \\ \theta_1\end{bmatrix} = \begin{bmatrix}x_2 \\ \theta_2\end{bmatrix} = \lambda \begin{bmatrix} x_1 \\ \theta_1 \end{bmatrix} . </math>
which is an [[eigenvalue]] equation:
<math display="block"> \left[ \mathbf{M} - \lambda\mathbf{I} \right] \begin{bmatrix}x_1 \\ \theta_1\end{bmatrix} = 0 , </math>
where
We proceed to calculate the eigenvalues of the transfer matrix:
Line 238 ⟶ 234:
where
<math display="block"> \operatorname{tr} ( \mathbf{M} ) = A + D = 2 - \frac{d}{f} </math>
is the [[trace (linear algebra)|trace]] of the {{abbr|RTM}}, and
<math display="block">\det(\mathbf{M}) = AD - BC = 1 </math>
is the [[determinant]] of the {{abbr|RTM}}. After one common substitution we have:
<math display="block"> \lambda^2 - 2g \lambda + 1 = 0 , </math>
where
Line 247 ⟶ 243:
<math display="block"> \lambda_{\pm} = g \pm \sqrt{g^2 - 1} . </math>
Now, consider a ray after
<math display="block"> \begin{bmatrix}x_N \\ \theta_N \end{bmatrix} = \lambda^N \begin{bmatrix}x_1 \\ \theta_1\end{bmatrix}. </math>
If the waveguide is stable, no ray should stray arbitrarily far from the main axis, that is,
<math display="block"> \lambda_{\pm} = g \pm i \sqrt{1 - g^2} = \cos(\phi) \pm i \sin(\phi) = e^{\pm i \phi} , </math>
with the substitution {{math|1=''g'' = cos(''ϕ'')}}.
For <math> g^2 < 1 </math> let <math> r_+ </math> and <math> r_- </math> be the eigenvectors with respect to the eigenvalues <math> \lambda_+ </math> and <math> \lambda_- </math> respectively, which span all the vector space because they are orthogonal, the latter due to {{nowrap|<math>\lambda_+ \neq \lambda_-</math>.}} The input vector can therefore be written as
<math display="block"> c_+ r_+ + c_- r_- , </math>
for some constants <math> c_+ </math> and {{nowrap|<math> c_- </math>.}}
After
<math display="block"> \mathbf{M}^N (c_+ r_+ + c_- r_-) = \lambda_+^N c_+ r_+ + \lambda_-^N c_- r_- = e^{i N \phi} c_+ r_+ + e^{- i N \phi} c_- r_- , </math>
which represents a periodic function.
== Gaussian beams ==
The same matrices can also be used to calculate the evolution of [[Gaussian beam]]s
<math display="block"> \frac{1}{q} = \frac{1}{R} - \frac{i\lambda_0}{\pi n w^2} . </math>
(
<math display="block"> q = (z - z_0) + i z_R .</math>
This beam can be propagated through an optical system with a given ray transfer matrix by using the equation{{explain|date=July 2019}}:
<math display="block"> \begin{bmatrix} q_2 \\ 1 \end{bmatrix} = k \begin{bmatrix} A & B \\ C & D \end{bmatrix} \begin{bmatrix}q_1 \\ 1 \end{bmatrix} , </math>
where
<math display="block">\begin{aligned} q_2 &= k (A q_1 + B)
1 &= k (C q_1 + D)\,.\end{aligned}</math>
Dividing the first equation by the second eliminates the normalization constant:
Line 283 ⟶ 278:
=== Example: Free space ===
Consider a beam traveling a distance
<math display="block">\begin{bmatrix} A & B \\ C & D \end{bmatrix} = \begin{bmatrix} 1 & d \\ 0 & 1 \end{bmatrix} .</math>
and so
<math display="block">q_2 = \frac{A q_1+B}{C q_1+D} = \frac{q_1+d}{1} = q_1+d</math>
consistent with the expression above for ordinary Gaussian beam propagation, i.e. {{nowrap|<math> q = (z-z_0) + i z_R</math>.}} As the beam propagates, both the radius and waist change.
=== Example: Thin lens ===
Consider a beam traveling through a thin lens with focal length
<math display="block">\begin{bmatrix}A&B\\C&D\end{bmatrix}=\begin{bmatrix}1&0\\-1/f&1\end{bmatrix}.</math>
and so
<math display="block">q_2 =\frac{Aq_1+B}{Cq_1+D} = \frac{q_1}{-\frac{q_1}{f}+1} </math>
<math display="block">\frac{1}{q_2} = \frac{-\frac{q_1}{f} + 1}{q_1} = \frac{1}{q_1} - \frac{1}{f} .</math>
Only the real part of {{math|1/''q''}} is affected: the wavefront curvature {{math|1/''R''}} is reduced by the [[Optical power|power]] of the lens {{math|1/''f''}}, while the lateral beam size
== Higher rank matrices ==
Methods using transfer matrices of higher dimensionality, that is
== See also ==
Line 304 ⟶ 299:
* [[Linear canonical transformation]]
==
{{reflist}}
== References ==
{{refbegin|30em|indent=yes}}
* {{cite journal |last1= Bastiaans |first1= Martin J. |last2= Alieva |first2= Tatiana |date= 2007-03-14 |title= Classification of lossless first-order optical systems and the linear canonical transformation |journal= Journal of the Optical Society of America A |volume= 24 |issue= 4 |pages= 1053–1062 |doi= 10.1364/josaa.24.001053 }}
* {{cite book |last= Brouwer |first= W. |date= 1964 |title= Matrix Methods in Optical Instrument Design |publisher= Benjamin |___location= New York }}
* {{cite book |last= Duarte |first= F. J. |date= 2003 |title= Tunable Laser Optics |publisher= Elsevier-Academic |___location= New York |author-link= F. J. Duarte }}
* {{cite book |last1= Gerrard |first1= A. |last2= Burch |first2= J. M. |date= 1994 |title= Introduction to Matrix Methods in Optics |edition= Dover |orig-year= 1975 |publisher= Dover Publications |url= https://archive.org/details/introductiontoma0000gerr_u8i1/ |url-access= registration |isbn= 0-486-68044-4 }}
* {{cite book |last= Hecht |first= Eugene |date= 2002 |title= Optics |edition= 4th |publisher= Addison Wesley }}
* {{cite journal |last1= Nazarathy |first1= Moshe |last2= Shamir |first2= Joseph |date= 1982-03-01 |title= First-order optics—a canonical operator representation: lossless systems |journal= Journal of the Optical Society of America |volume= 72 |issue= 3 |pages= 356 |doi= 10.1364/josa.72.000356 }}
* {{cite conference |last= Nussbaum |first= Allen |date= 1 March 1992 |title= Modernizing the Teaching of Advanced Geometric Optics |publisher= [[SPIE]] |conference= Education in Optics, 1991 |book-title= Proc. SPIE 1603 |___location= Leningrad, Russian Federation |pages= 389–400 |url= http://spie.org/ETOP/1991/389_1.pdf }}
* {{cite journal |last1= Rashidian Vaziri |first1= M. R. |last2= Hajiesmaeilbaigi |first2= F. |last3= Maleki |first3= |date= 2013 |title= New ducting model for analyzing the Gaussian beam propagation in nonlinear Kerr media and its application to spatial self-phase modulations |journal= Journal of Optics |volume= 15 |issue= 3 |pages= 035202 |doi= 10.1088/2040-8978/15/3/035202 |url= https://iopscience.iop.org/article/10.1088/2040-8978/15/3/035202/pdf }}
* {{cite book |last= Siegman |first= Anthony E. |date= 1986 |title= Lasers |publisher= University Science Books |___location= Mill Valley, California |author-link= Anthony E. Siegman }}
* {{cite book |last= Wollnik |first= H. |date= 1987 |title= Optics of Charged Particles |publisher= Academic |___location= New York }}
{{refend}}
==Further reading==
* {{cite book |
== External links ==
Line 315 ⟶ 323:
* [http://www.photonics.byu.edu/ABCD_Matrix_tut.phtml ABCD Matrices Tutorial] Provides an example for a system matrix of an entire system.
* [http://www.photonics.byu.edu/ABCD_Calc.phtml ABCD Calculator] An interactive calculator to help solve ABCD matrices.
[[Category:Geometrical optics]]
|