Content deleted Content added
Citation bot (talk | contribs) Altered url. URLs might have been anonymized. | Use this bot. Report bugs. | Suggested by Abductive | Category:Gamma and related functions | #UCB_Category 10/38 |
MuCephei14 (talk | contribs) m →General rational argument: form |
||
Line 100:
where <math>\gamma</math> is the [[Euler–Mascheroni constant]] and <math>\sim</math> denotes [[Asymptotic analysis|asymptotic equivalence]].
It is unknown whether these constants are [[transcendental number|transcendental]] in general, but
The number
:<math>\Gamma\left(\tfrac14\right) = \sqrt{2\varpi\sqrt{2\pi}},</math>
Line 119:
|s2cid=123079859
}}</ref> that
<!-- :<math>\log \Gamma(1/4) = \frac{1}{4}(1 + 3 \log \pi + 2 \log 2 + 2 \gamma - \mathrm{\rho})</math> --><math>\Gamma \left (\tfrac14 \right ) = \sqrt[4]{4 \pi^3 e^{2 \gamma -\mathrm{\delta}+1}}</math>
where {{mvar|δ}} is the [[Masser–Gramain constant]] {{OEIS2C|A086058}}, although numerical work by Melquiond et al. indicates that this conjecture is false.<ref>{{cite journal|doi=10.1090/S0025-5718-2012-02635-4 |first1=Guillaume|last1= Melquiond|first2=W. Georg |last2=Nowak|first3=Paul |last3=Zimmermann|journal=Math. Comp.|title=Numerical approximation of the Masser–Gramain constant to four decimal places|year=2013|volume=82|issue=282|pages=1235–1246|doi-access=free}}</ref>
Line 138 ⟶ 136:
|mr=1186733
|doi=10.1093/imanum/12.4.519
}}</ref> have found that
:<math>\begin{align}
\Gamma \left(\tfrac16 \right) &= \frac{\sqrt{\frac{3}{\pi }} \Gamma\left(\frac{1}{3}\right)^2}{\sqrt[3]{2}} \\
Line 157 ⟶ 155:
where {{mvar|A}} is the [[Glaisher–Kinkelin constant]] and {{mvar|G}} is [[Catalan's constant]].
The following two representations for
| last = Mező
| first = István
Line 207 ⟶ 205:
:<math>\frac{\Gamma\left(\frac{1}{5}\right)^2}{\Gamma\left(\frac{1}{10}\right)\Gamma\left(\frac{3}{10}\right)} = \frac{\sqrt{1+\sqrt{5}}}{2^{\tfrac{7}{10}}\sqrt[4]{5}}</math>
and many more relations for
| last = Vidūnas | first = Raimundas
| arxiv = math/0403510
Line 226 ⟶ 224:
:<math>\Gamma(i) = \frac{G(1+i)}{G(i)} = e^{-\log G(i)+ \log G(1+i)}.</math>
Because of the [[Reflection formula|Euler Reflection Formula]], and the fact that <math>\Gamma(\
:<math>\left|\Gamma(i\kappa)\right|^2=\frac{\pi}{\kappa\sinh(\pi\kappa)}</math>
|