Logarithm of a matrix: Difference between revisions

Content deleted Content added
Power series expression: cleaned up ongoing sign errors, showing enough detail to make future debugging easier I hope
Line 12:
== Power series expression ==
If ''B'' is sufficiently close to the identity matrix, then a logarithm of ''B'' may be computed by means of the [[power series]]
: <math>\log(B) = \log(I- + (I-B - I)) = -\sum_{k=1}^{\infty} \frac{(I-B1)^{k + 1}}{k} (B - I)^k = (B - I) - \frac{(B - I)^2}{2} + \frac{(B - I)^3}{3} - \cdots</math>,
which can be rewritten as
</math>.
:<math>\log(B) = -\sum_{k=1}^{\infty} \frac{(I - B)^k}{k} = -(I - B) - \frac{(I - B)^2}{2} - \frac{(I - B)^3}{3} - \cdots</math>.
Specifically, if <math>\left\|I-B\right\|<1</math>, then the preceding series converges and <math>e^{\log(B)}=B</math>.<ref>{{harvnb|Hall|2015}} Theorem 2.8</ref>