Content deleted Content added
→Eigenvalues: Tweak cites |
m Substing templates: {{Format ISBN}}. See User:AnomieBOT/docs/TemplateSubster for info. |
||
Line 113:
:<math> a - 2 \sqrt{bc} \cos \left (\frac{k\pi}{n+1} \right ), \qquad k=1, \ldots, n. </math>
A real [[symmetric matrix|symmetric]] tridiagonal matrix has real eigenvalues, and all the eigenvalues are [[Eigenvalues and eigenvectors#Algebraic multiplicity|distinct (simple)]] if all off-diagonal elements are nonzero.<ref>{{Cite book | last1 = Parlett | first1 = B.N. | title = The Symmetric Eigenvalue Problem |orig-year = 1980 | publisher =SIAM |date=1997 |oclc= 228147822 |series=Classics in applied mathematics |volume=20 |isbn=
As a side note, an ''unreduced'' symmetric tridiagonal matrix is a matrix containing non-zero off-diagonal elements of the tridiagonal, where the eigenvalues are distinct while the eigenvectors are unique up to a scale factor and are mutually orthogonal.<ref>{{cite thesis |last1=Dhillon |first1=Inderjit Singh |title=A New O(n<sup>2</sup>) Algorithm for the Symmetric Tridiagonal Eigenvalue/Eigenvector Problem |page=8 |type=PhD |publisher=University of California, Berkeley |id=CSD-97-971, ADA637073 |date=1997 |url=http://www.cs.utexas.edu/~inderjit/public_papers/thesis.pdf}}</ref>
|