Content deleted Content added
m Open access bot: doi updated in citation with #oabot. |
No edit summary Tags: Reverted Visual edit |
||
Line 3:
[[File:Example Structural equation model.svg|alt= An example structural equation model|thumb|336x336px|Figure 1. An example structural equation model after estimation. Latent variables are sometimes indicated with ovals while observed variables are shown in rectangles. Residuals and variances are sometimes drawn as double-headed arrows (shown here) or single arrows and a circle (as in Figure 2). The latent IQ variance is fixed at 1 to provide scale to the model. Figure 1 depicts measurement errors influencing each indicator of latent intelligence and each indicator of latent achievement. Neither the indicators nor the measurement errors of the indicators are modeled as influencing the latent variables.<ref name="Salkind2007" />]]
[[File:Example SEM of Human Intelligence.png|alt=An example structural equation model pre-estimation|thumb|336x336px|Figure 2. An example structural equation model before estimation. Similar to Figure 1 but without standardized values and fewer items. Because intelligence and academic performance are merely imagined or theory-postulated variables, their precise scale values are unknown, though the model specifies that each latent variable's values must fall somewhere along the observable scale possessed by one of the indicators. The 1.0 effect connecting a latent to an indicator specifies that each real unit increase or decrease in the latent variable's value results in a corresponding unit increase or decrease in the indicator's value. It is hoped a good indicator has been chosen for each latent, but the 1.0 values do not signal perfect measurement because this model also postulates that there are other unspecified entities causally impacting the observed indicator measurements, thereby introducing measurement error. This model postulates that separate measurement errors influence each of the two indicators of latent intelligence, and each indicator of latent achievement. The unlabeled arrow pointing to academic performance acknowledges that things other than intelligence can also influence academic performance.]]{{Npov|date=August 2024}}
'''Structural equation modeling''' ('''SEM''') is a diverse set of methods used by scientists doing both observational and experimental research. SEM is used mostly in the social and behavioral sciences but it is also used in epidemiology,<ref name="BM08">{{cite book | doi=10.4135/9781412953948.n443 | chapter=Structural Equation Modeling | title=Encyclopedia of Epidemiology | date=2008 | isbn=978-1-4129-2816-8 }}</ref> business,<ref name="Shelley06">{{cite book | doi=10.4135/9781412939584.n544 | chapter=Structural Equation Modeling | title=Encyclopedia of Educational Leadership and Administration | date=2006 | isbn=978-0-7619-3087-7 }}</ref> and other fields. A definition of SEM is difficult without reference to technical language, but a good starting place is the name itself.
|