Hyperbolic functions: Difference between revisions

Content deleted Content added
Tag: Reverted
Undid revision 1242194966 by 67.249.248.128 (talk) rv: this is not a textbook
Line 92:
=== Hyperbolic cosine ===
 
It can be shown that the [[area under the curve]] of the hyperbolic cosine (over a finite interval) is always equal to the arc length (see ''[[Arc_length#Finding_arc_lengths_by_integration|Arcarc length § Finding arc lengths by integration]]'') corresponding to that interval:<ref>{{cite book | title=Golden Integral Calculus | first1=Bali | last1=N.P. | publisher=Firewall Media | year=2005 | isbn=81-7008-169-6 | page=472 | url=https://books.google.com/books?id=hfi2bn2Ly4cC&pg=PA472}}</ref>
<math display="block">\text{area} = \int_a^b \cosh x \,dx = \int_a^b \sqrt{1 + \left(\frac{d}{dx} \cosh x \right)^2} \,dx = \text{arc length.}</math>
since,
<math display="block">\begin{alignat}{0}
& \cosh x = \sqrt{1 + \left(\frac{d}{dx} \cosh x \right)^2}\\
& \cosh^2x = 1 + \sinh^2x\\
& \left(\frac {e^x + e^{-x}} {2}\right)^2 = 1 + \left(\frac {e^x - e^{-x}} {2}\right)^2\\
& \frac {e^{2x} + e^{-2x} + 2} {4} = \frac {e^{2x} + e^{-2x} + 2} {4}\\
\end{alignat}</math>
 
===Hyperbolic tangent{{anchor|tanh}}===