Visual cortex: Difference between revisions

Content deleted Content added
Citation bot (talk | contribs)
Altered issue. Formatted dashes. | Use this bot. Report bugs. | Suggested by Headbomb | #UCB_toolbar
Citation bot (talk | contribs)
Removed parameters. | Use this bot. Report bugs. | Suggested by GoingBatty | #UCB_toolbar
Line 81:
The correspondence between specific locations in V1 and the subjective visual field is exceptionally precise, even extending to map the blind spots of the retina. Evolutionarily, this correspondence is a fundamental feature found in most animals possessing a V1. In humans and other species with a fovea (cones in the retina), a substantial portion of V1 is mapped to the small central portion of the visual field—a phenomenon termed cortical magnification. This magnification reflects an increased representation and processing capacity devoted to the central visual field, essential for detailed visual acuity and high-resolution processing.
 
Notably, neurons in V1 have the smallest receptive field size, signifying the highest resolution, among visual cortex microscopic regions. This specialization equips V1 with the ability to capture fine details and nuances in the visual input, emphasizing its pivotal role as a critical hub in early visual processing and contributing significantly to our intricate and nuanced visual perception.<ref>{{cite journal | vauthors = Wu F, Lu Q, Kong Y, Zhang Z | title = A Comprehensive Overview of the Role of Visual Cortex Malfunction in Depressive Disorders: Opportunities and Challenges | journal = Neuroscience Bulletin | volume = 39 | issue = 9 | pages = 1426–1438 | date = September 2023 | pmid = 36995569 | pmc = 10062279 | doi = 10.1007/s12264-023-01052-7 | pmc-embargo-date = September 1, 2024 }}</ref>
 
In addition to its role in spatial processing, the retinotopic map in V1 is intricately connected with other visual areas, forming a network that contributes to the integration of various visual features and the construction of a coherent visual percept. This dynamic mapping mechanism is fundamental to our ability to navigate and interpret the visual world effectively.<ref name= kepler1604 >Johannes Kepler (1604) Paralipomena to Witelo whereby The Optical Part of Astronomy is Treated (Ad Vitellionem Paralipomena, quibus astronomiae pars optica traditvr, 1604), as cited by A.Mark Smith (2015) From Sight to Light. Kepler modeled the eye as a water-filled glass sphere, and discovered that each point of the scene taken in by the eye projects onto a point on the back of the eye (the retina).</ref> The correspondence between a given ___location in V1 and in the subjective visual field is very precise: even the [[Blind spot (vision)|blind spots]] of the retina are mapped into V1. In terms of evolution, this correspondence is very basic and found in most animals that possess a V1. In humans and other animals with a [[Fovea centralis|fovea]] ([[Cone cell|cones]] in the retina), a large portion of V1 is mapped to the small, central portion of visual field, a phenomenon known as [[cortical magnification]].<ref>{{cite thesis | vauthors = Barghout L |title=On the Differences Between Peripheral and Foveal Pattern Masking |date=1999 |type=Masters |publisher=University of California, Berkeley|___location=Berkeley, California}}</ref> Perhaps for the purpose of accurate spatial encoding, neurons in V1 have the smallest [[receptive field]] size (that is, the highest resolution) of any visual cortex microscopic regions.