Control theory: Difference between revisions

Content deleted Content added
Reverted good faith edits by 128.227.158.159 (talk): Needs a reliable source.
C4dn (talk | contribs)
m Stability: Internally link "modulus" to Absolute value#Complex_numbers
Line 88:
The difference between the two cases is simply due to the traditional method of plotting continuous time versus discrete time transfer functions. The continuous Laplace transform is in [[Cartesian coordinates]] where the <math>x</math> axis is the real axis and the discrete Z-transform is in [[circular coordinates]] where the <math>\rho</math> axis is the real axis.
 
When the appropriate conditions above are satisfied a system is said to be [[asymptotic stability|asymptotically stable]]; the variables of an asymptotically stable control system always decrease from their initial value and do not show permanent oscillations. Permanent oscillations occur when a pole has a real part exactly equal to zero (in the continuous time case) or a [[Absolute value#Complex_numbers|modulus]] equal to one (in the discrete time case). If a simply stable system response neither decays nor grows over time, and has no oscillations, it is [[marginal stability|marginally stable]]; in this case the system transfer function has non-repeated poles at the complex plane origin (i.e. their real and complex component is zero in the continuous time case). Oscillations are present when poles with real part equal to zero have an imaginary part not equal to zero.
 
If a system in question has an [[impulse response]] of