Content deleted Content added
Shonebrooks (talk | contribs) m →Combustion: I corrected the spelling of "system." WP:TYPO |
Citation bot (talk | contribs) Altered template type. Removed Template redirect. | Use this bot. Report bugs. | Suggested by Grimes2 | #UCB_webform 950/1298 |
||
Line 328:
File:Marbore IV.jpg|[[Turbomeca Marboré]] IV engine showing ___location of leakage between impeller blades and stationary shroud, shown sectioned and painted blue. This is the leak path for a centrifugal impeller equivalent to an axial blade tip to casing clearance.<ref name="AGARD" /> The clearance between the impeller vanes and their shroud is visible and has to be as small as possible without causing rubbing contact. This keeps leakage to a minimum and contributes to the efficiency of the engine.
File:CASING TREATMENT AND DAMAGED BLADES IN LOWER HALF OF J-85 COMPRESSOR CASING - NARA - 17419590.jpg|An example of the appearance of minor compressor blade tip rubs on their shrouds.
File:CFM56 High Pressure Turbine Blade.JPG|A used CFM56 high pressure turbine blade. New blades have 3 different-depth notches at the tip to aid visual assessment (using a borescope) of rubbed away material and consequent increase in tip clearance. 0.25 mm of lost blade-tip causes a 10 deg C loss of EGT margin.<ref>{{
File:CFM56 High Pressure Turbine Vane.JPG|CFM56 turbine nozzle guide vanes. The area for the combustor gas flow for the complete ring of vanes at the narrowest part of the passage is known as the turbine area. When the vane trailing edges deteriorate the area increases and the engine runs hotter, which causes increasingly rapid deterioration, and uses more fuel to reach take-off thrust.<ref>https://www.jstor.org/stable/171375,"The Nozzle Guide Vane Problem", Plante</ref>
File:Repair process for a V2500 high-pressure turbine guide vane (1).jpg|A V2500 vane showing thermal damage at the trailing edge which causes performance loss by altering the flow area.
|