Refractive index: Difference between revisions

Content deleted Content added
Complex refractive index: Remove the wikilink, the article does not cover this case.
Line 246:
 
: <math>\sqrt{n_1^2+\kappa_1^2}\sin\theta_1=\sqrt{n_2^2+\kappa_2^2}\sin\theta_2</math>
Accordingly, the total internal (or external) reflection critical angle can be calculated as:<math display="block">\theta_\mathrm{c} =\arcsin\!\left(\frac{|\underline{n_2}|}{|\underline{n_1}|}\right)\!= \arcsin\!\left(\frac{\sqrt{n_2^2+\kappa_2^2}}{\sqrt{n_1^2+\kappa_1^2}}\right)\!.</math>
 
===Total internal reflection===