Content deleted Content added
→Limitations of Traditional Numerical Methods: Fixed typo Tags: Mobile edit Mobile web edit |
No edit summary |
||
Line 10:
[[Deep Learning]] is a [[machine learning]] method based on multilayer [[neural networks]]. Its core concept can be traced back to the neural computing models of the 1940s. In the 1980s, the proposal of the [[backpropagation]] algorithm made the training of multilayer neural networks possible. In 2006, the [[Deep Belief Networks]] proposed by [[Geoffrey Hinton]] and others rekindled interest in deep learning. Since then, deep learning has made groundbreaking advancements in [[image processing]], [[speech recognition]], [[natural language processing]], and other fields.<ref name="NatureBengio">{{cite journal |last1=LeCun |first1= Yann|last2=Bengio |first2=Yoshua | last3=Hinton | first3= Geoffrey|s2cid=3074096 |year=2015 |title=Deep Learning |journal=Nature |volume=521 |issue=7553 |pages=436–444 |doi=10.1038/nature14539 |pmid=26017442|bibcode=2015Natur.521..436L |url= https://hal.science/hal-04206682/file/Lecun2015.pdf}}</ref>
===Limitations of
Traditional numerical methods for solving stochastic differential equations<ref name="kloeden">Kloeden, P.E., Platen E. (1992). Numerical Solution of Stochastic Differential Equations. Springer, Berlin, Heidelberg. DOI: https://doi.org/10.1007/978-3-662-12616-5</ref> include the [[Euler–Maruyama method]], [[Milstein method]], [[Runge–Kutta method (SDE)]] and methods based on different representations of iterated stochastic integrals.<ref name="Kuznetsov">Kuznetsov, D.F. (2023). Strong approximation of iterated Itô and Stratonovich stochastic integrals: Method of generalized multiple Fourier series. Application to numerical integration of Itô SDEs and semilinear SPDEs. Differ. Uravn. Protsesy Upr., no. 1. DOI: https://doi.org/10.21638/11701/spbu35.2023.110</ref><ref name="Rybakov">Rybakov, K.A. (2023). Spectral representations of iterated stochastic integrals and their application for modeling nonlinear stochastic dynamics. Mathematics, vol. 11, 4047. DOI: https://doi.org/10.3390/math11194047</ref>
Line 58:
</math>
====3. Backward stochastic differential equation (BSDE)====
Then the solution of the PDE satisfies the following BSDE:
Line 125:
This function implements the Adam<ref name="Adam2014">{{cite arXiv |eprint=1412.6980 |class=cs.LG |first1=Diederik |last1=Kingma |first2=Jimmy |last2=Ba |title=Adam: A Method for Stochastic Optimization |year=2014}}</ref> algorithm for minimizing the target function <math>\mathcal{G}(\theta)</math>.
'''Function:''' ADAM(<math>\alpha</math>, <math>\beta_1</math>, <math>\beta_2</math>, <math>\epsilon</math>, <math>\mathcal{G}(\theta)</math>, <math>\theta_0</math>) '''is'''
<math>m_0 := 0</math> ''// Initialize the first moment vector''
Line 150:
This function implements the backpropagation algorithm for training a multi-layer feedforward neural network.
'''Function:''' BackPropagation(''set'' <math>D=\left\{(\mathbf{x}_k,\mathbf{y}_k)\right\}_{k=1}^{m}</math>) '''is'''
''// Step 1: Random initialization''
''// Step 2: Optimization loop''
Line 182:
This function calculates the optimal investment portfolio using the specified parameters and stochastic processes.
'''function''' OptimalInvestment(<math>W_{t_{i+1}} - W_{t_i}</math>, <math>x</math>, <math>\theta=(X_{0}, H_{0}, \theta_{1}, \theta_{2}, \dots, \theta_{N-1})</math>) '''is'''
''// Step 1: Initialization''
'''for''' <math>k := 0</math> '''to''' maxstep '''do'''
Line 212:
===Advantages===
Sources:<ref name="Han2018" /><ref name="Beck2019" />
# High-
# Flexibility: The incorporation of deep neural networks allows this method to adapt to various types of BSDEs and financial models.
# Parallel
===Disadvantages===
Sources:<ref name="Han2018" /><ref name="Beck2019" />
# Training
# Parameter
==See also==
{{Div col|colwidth=22em}}
* [[Bellman equation]]
* [[Dynamic programming]]
* [[Applications of artificial intelligence]]
* [[List of artificial intelligence projects]]
* [[Backward stochastic differential equation]]
Line 262:
* {{cite journal|last1=Higham.|first1=Desmond J.|title=An Algorithmic Introduction to Numerical Simulation of Stochastic Differential Equations|journal=SIAM Review|date=January 2001|volume=43|issue=3|pages=525–546|doi=10.1137/S0036144500378302|bibcode=2001SIAMR..43..525H|citeseerx=10.1.1.137.6375}}
* Desmond Higham and Peter Kloeden: "An Introduction to the Numerical Simulation of Stochastic Differential Equations", SIAM, {{ISBN|978-1-611976-42-7}} (2021).
{{Numerical PDE}}
{{Industrial and applied mathematics}}
{{DEFAULTSORT:Numerical Partial Differential Equations}}
[[Category:Numerical differential equations| ]]
|