Content deleted Content added
Citation bot (talk | contribs) Alter: journal, url, template type. URLs might have been anonymized. Add: publisher, date, title, isbn, authors 1-1. Changed bare reference to CS1/2. Removed parameters. Some additions/deletions were parameter name changes. | Use this bot. Report bugs. | Suggested by Jay8g | #UCB_toolbar |
No edit summary |
||
Line 14:
Non-volatile RAM has also been developed<ref>{{cite magazine|last=Gallagher|first=Sean|title=Memory that never forgets: non-volatile DIMMs hit the market|url=https://arstechnica.com/information-technology/2013/04/memory-that-never-forgets-non-volatile-dimms-hit-the-market/|magazine=[[Ars Technica]]|url-status=live|archive-url=https://web.archive.org/web/20170708073138/https://arstechnica.com/information-technology/2013/04/memory-that-never-forgets-non-volatile-dimms-hit-the-market/|archive-date=July 8, 2017|date=April 4, 2013}}</ref> and other types of [[Non-volatile memory|non-volatile memories]] allow random access for read operations, but either do not allow write operations or have other kinds of limitations. These include most types of [[ROM]] and [[NOR flash memory]].
The use of semiconductor RAM dates back to 1965 when IBM introduced the monolithic (single-chip) 16-bit SP95 SRAM chip for their [[IBM System/360|System/360 Model 95]] computer, and [[Toshiba]] used
==History==
Line 34:
This led to the development of [[metal–oxide–semiconductor]] (MOS) memory by John Schmidt at [[Fairchild Semiconductor]] in 1964.<ref name="computerhistory1970" /><ref>{{Cite book |url=https://books.google.com/books?id=kG4rAQAAIAAJ&q=John+Schmidt |title=Solid State Design – Vol. 6 |date=1965 |publisher=Horizon House}}</ref> In addition to higher speeds, MOS [[semiconductor memory]] was cheaper and consumed less power than magnetic core memory.<ref name="computerhistory1970" /> The development of [[silicon-gate]] [[MOS integrated circuit]] (MOS IC) technology by [[Federico Faggin]] at Fairchild in 1968 enabled the production of MOS [[memory chip]]s.<ref>{{cite web |title=1968: Silicon Gate Technology Developed for ICs |url=https://www.computerhistory.org/siliconengine/silicon-gate-technology-developed-for-ics/ |website=[[Computer History Museum]] |access-date=10 August 2019}}</ref> MOS memory overtook magnetic core memory as the dominant memory technology in the early 1970s.<ref name="computerhistory1970" />
| country = US
| number = 3562721
Line 46:
}}</ref> It was followed by the development of MOS SRAM by John Schmidt at Fairchild in 1964.<ref name="computerhistory1970"/> SRAM became an alternative to magnetic-core memory, but required six MOS transistors for each [[bit]] of data.<ref name="ibm100">{{cite web |title=DRAM |url=https://www.ibm.com/ibm/history/ibm100/us/en/icons/dram/ |website=IBM100 |publisher=[[IBM]] |access-date=20 September 2019 |date=9 August 2017}}</ref> Commercial use of SRAM began in 1965, when [[IBM]] introduced the SP95 memory chip for the [[IBM System/360|System/360 Model 95]].<ref name="computerhistory1966"/>
[[Dynamic random-access memory]] (DRAM) allowed replacement of a 4 or 6-transistor latch circuit by a single transistor for each memory bit, greatly increasing memory density at the cost of volatility. Data was stored in the tiny capacitance of each transistor, and had to be periodically refreshed every few milliseconds before the charge could leak away.
[[Toshiba]]'s Toscal BC-1411 [[electronic calculator]], which was introduced in 1965,<ref>[http://collection.sciencemuseum.org.uk/objects/co8406093/toscal-bc-1411-calculator-with-electronic-calculator Toscal BC-1411 calculator]. {{webarchive|url=https://web.archive.org/web/20170729145228/http://collection.sciencemuseum.org.uk/objects/co8406093/toscal-bc-1411-calculator-with-electronic-calculator |date=2017-07-29 }}, [[Science Museum, London]].</ref><ref name="bc-spec" /><ref name="bc" /> used a form of capacitive bipolar DRAM, storing 180-bit data on discrete [[Memory cell (computing)|memory cells]], consisting of [[germanium]] bipolar transistors and capacitors.<ref name="bc-spec" /><ref name="bc" /> While it offered higher speeds than magnetic-core memory, bipolar DRAM could not compete with the lower price of the then dominant magnetic-core memory.<ref>{{cite web |title=1966: Semiconductor RAMs Serve High-speed Storage Needs |url=https://www.computerhistory.org/siliconengine/semiconductor-rams-serve-high-speed-storage-needs/ |website=Computer History Museum}}</ref> [[File:Bundesarchiv Bild 183-1989-0406-022, VEB Carl Zeiss Jena, 1-Megabit-Chip.jpg|thumb|right|CMOS 1-[[megabit]] (Mbit) DRAM chip, one of the last models developed by [[VEB Carl Zeiss Jena]] in 1989]]
MOS technology is the basis for modern DRAM. In 1966, Dr. [[Robert H. Dennard]] at the [[IBM Thomas J. Watson Research Center]] was working on MOS memory. While examining the characteristics of MOS technology, he found it was capable of building [[capacitor]]s, and that storing a charge or no charge on the MOS capacitor could represent the 1 and 0 of a bit, while the MOS transistor could control writing the charge to the capacitor. This led to his development of a single-transistor DRAM memory cell.<ref name="ibm100"/> In 1967, Dennard filed a patent under IBM for a single-transistor DRAM memory cell, based on MOS technology.<ref name="Robert Dennard"/> The first commercial DRAM IC chip was the [[Intel 1103]], which was [[Semiconductor manufacturing process|manufactured]] on an [[10 μm process|8{{nbsp}}μm]] MOS process with a capacity of 1{{nbsp}}[[Kilobit|kbit]], and was released in 1970.<ref name="computerhistory1970"/><ref name="Lojek-1103"/><ref>{{cite web |first=Mary |last=Bellis |url=http://inventors.about.com/library/weekly/aa100898.htm |title=The Invention of the Intel 1103 |access-date=2015-07-11 |archive-date=2020-03-14 |archive-url=https://web.archive.org/web/20200314061801/http://inventors.about.com/library/weekly/aa100898.htm |url-status=dead }}</ref>
==Types==
|