Content deleted Content added
define symbol |
inserted explanation for the undefined circle operator, added some parens to make boundaries of differential operators clear, minor math typesetting |
||
Line 61:
== The derivative for quaternions ==
Since the time of Hamilton, it has been realized that requiring the independence of the [[derivative]] from the path that a differential follows toward zero is too restrictive: it excludes even <math>f(q) = q^2</math> from differentiation. Therefore, a direction-dependent derivative is necessary for functions of a quaternion variable.<ref>{{
Considering the increment of [[polynomial function]] of quaternionic argument shows that the increment is a linear map of increment of the argument.
A continuous map
<math> f: \mathbb H \rightarrow \mathbb H </math>
is called differentiable on the set <math>U \subset \mathbb H</math>, if, at every point <math>x \in U</math>, the increment of the map <math>f</math> can be represented as
: <math> f(x+h) - f(x) = \frac{\operatorname d f(x)}{\operatorname d x} \circ h + o(h)</math>
where
: <math>\frac{\operatorname d f(x)}{\operatorname d x}:\mathbb H\rightarrow\mathbb H</math>
is [[linear map]] of quaternion algebra <math>\mathbb H</math> and
<math>o:\mathbb H\rightarrow \mathbb H</math>
is a continuous map such that
: <math>\lim_{a\rightarrow 0}\frac{|o(a)|}{|a|}=0</math>
and the notation <math>\circ h</math> denotes that the direction-dependent quaternionic derivative is oriented in the direction of the quaternion {{mvar|h}}.
The linear map
<math>\frac{\operatorname d f(x)}{\operatorname d x}</math>
is called the derivative of the map <math>f</math>.
On the quaternions, the derivative may be expressed as
: <math>\frac{\operatorname d f(x)}{\operatorname d x} = \sum_s \frac{
Therefore, the differential of the map <math>f</math> may be expressed as follows with brackets on either side.
:<math>\frac{\operatorname d f(x)}{\operatorname d x}\circ
The number of terms in the sum will depend on the function
<math>~~ \frac{
components of derivative.
The derivative of a quaternionic function holds the following equalities
: <math>\frac{
:: where the variable {{mvar|t}} is real / scalar.
: <math>\frac{\operatorname d\left( f(x) + g(x) \right)}{\operatorname d x} = \frac{
: <math>\frac{
: <math>\frac{
: <math>\frac{
: <math>\frac{
For the function {{math|''f''(''x'') {{=}} ''
{| class="wikitable"
|-
| <math>\frac{
|style="background:white;"|  
| <math>dy=\frac{
|}
Line 111 ⟶ 114:
{| class="wikitable"
|-
| <math> \frac{
|style="background:white;"|  
| <math> \frac{
|}
Similarly, for the function {{math|''f''(''x'') {{=}} ''x''<sup>2</sup>
{| class="wikitable"
|-
| <math>\frac{
|style="background:white;"|  
| <math>dy=\frac{
|}
Line 127 ⟶ 130:
{| class="wikitable"
|-
| <math> \frac{
|style="background:white;"|  
| <math> \frac{
|-
| <math>\frac{
|style="background:white;"|  
| <math>\frac{
|}
Finally, for the function {{math|''f''(''x'') {{=}} ''x''<sup>−1</sup>}}, the derivative is
{| class="wikitable"
|-
| <math>\frac{
|style="background:white;"|  
| <math>dy=\frac{
|}
Line 147 ⟶ 150:
{| class="wikitable"
|-
| <math>\frac{
|style="background:white;"|  
| <math>\frac{
|}
|