Quaternionic analysis: Difference between revisions

Content deleted Content added
define symbol
inserted explanation for the undefined circle operator, added some parens to make boundaries of differential operators clear, minor math typesetting
Line 61:
 
== The derivative for quaternions ==
Since the time of Hamilton, it has been realized that requiring the independence of the [[derivative]] from the path that a differential follows toward zero is too restrictive: it excludes even <math>f(q) = q^2</math> from differentiation. Therefore, a direction-dependent derivative is necessary for functions of a quaternion variable.<ref>{{harvharvp|Hamilton|1866|loc=Chapter II, On differentials and developments of functions of quaternions, pp. 391–495}}</ref><ref>{{harvharvp|Laisant|1881|loc=Chapitre 5: Différentiation des Quaternions, pp. 104–117}}</ref>
Considering the increment of [[polynomial function]] of quaternionic argument shows that the increment is a linear map of increment of the argument. {{Dubious|date=March 2019}} From this, a definition can be made:
 
A continuous map
<math> f: \mathbb H \rightarrow \mathbb H </math>
is called differentiable on the set <math>U \subset \mathbb H</math>, if, at every point <math>x \in U</math>, the increment of the map <math>f</math> can be represented as
: <math> f(x+h) - f(x) = \frac{\operatorname d f(x)}{\operatorname d x} \circ h + o(h)</math>
where
: <math>\frac{\operatorname d f(x)}{\operatorname d x}:\mathbb H\rightarrow\mathbb H</math>
is [[linear map]] of quaternion algebra <math>\mathbb H</math> and
<math>o:\mathbb H\rightarrow \mathbb H</math>
is a continuous map such that
: <math>\lim_{a\rightarrow 0}\frac{|o(a)|}{|a|}=0</math>
and the notation <math>\circ h</math> denotes that the direction-dependent quaternionic derivative is oriented in the direction of the quaternion {{mvar|h}}.
 
The linear map
<math>\frac{\operatorname d f(x)}{\operatorname d x}</math>
is called the derivative of the map <math>f</math>.
 
On the quaternions, the derivative may be expressed as
: <math>\frac{\operatorname d f(x)}{\operatorname d x} = \sum_s \frac{d_\operatorname{d}_{s0} f(x)}{\operatorname d x} \otimes \frac{d_\operatorname{d}_{s1} f(x)}{\operatorname d x}</math>
Therefore, the differential of the map <math>f</math> may be expressed as follows with brackets on either side.
:<math>\frac{\operatorname d f(x)}{\operatorname d x}\circ dx\operatorname d x = \left(\sum_s \frac{d_\operatorname{d}_{s0} f(x)}{\operatorname d x} \otimes \frac{d_\operatorname{d}_{s1} f(x)}{\operatorname d x}\right)\circ dx\operatorname d x = \sum_s \frac{d_\operatorname{d}_{s0} f(x)}{\operatorname d x} dx\operatorname d x \frac{d_\operatorname{d}_{s1} f(x)}{\operatorname d x}</math>
 
The number of terms in the sum will depend on the function ''{{mvar|f''}}. The expressions
<math>~~ \frac{d_\operatorname{d}_{sp}\operatorname d f(x)}{\operatorname d x}, ~~ \mathsf{\ for\ } ~~ p = 0, 1 ~~</math> are called
components of derivative.
 
The derivative of a quaternionic function holds the following equalities
: <math>\frac{df\operatorname d f(x)}{\operatorname d x}\circ h = \lim_{t\to 0}\Bigl(\ t^{-1} \bigl(\ f(x +th t\ h) - f(x)\ \bigr)\ \Bigr)</math>
:: where the variable {{mvar|t}} is real / scalar.
 
: <math>\frac{\operatorname d\left( f(x) + g(x) \right)}{\operatorname d x} = \frac{df\operatorname d f(x)}{\operatorname d x}+\frac{dg\operatorname d g(x)}{\operatorname d x}</math>
 
: <math>\frac{df\operatorname d\left( f(x)\ g(x)\right)}{\operatorname d x} = \frac{df\operatorname d f(x) }{\operatorname d x}\ g(x) + f(x)\ \frac{dg\operatorname d g(x)}{\operatorname d x}</math>
 
: <math>\frac{df\operatorname d \left( f(x)\ g(x)\right)}{\operatorname d x} \circ h = \left(\frac{df\operatorname d f(x)}{\operatorname d x}\circ h\right )\ g(x) + f(x) \left(\frac{dg\operatorname d g(x)}{\operatorname d x}\circ h\right)</math>
 
: <math>\frac{daf\operatorname d \left( a\ f(x)\ b\right)}{\operatorname d x} = a\ \frac{df\operatorname d f(x)}{\operatorname d x}\ b</math>
 
: <math>\frac{daf\operatorname d \left( a\ f(x)\ b\right)}{\operatorname d x}\circ h = a \left(\frac{df\operatorname d f(x)}{\operatorname d x}\circ h\right) b</math>
 
For the function {{math|''f''(''x'') {{=}} ''axba x b''}}, the derivative is
{| class="wikitable"
|-
| <math>\frac{daxb\operatorname d \left( a\ x\ b \right)}{\operatorname d x} = a \otimes b </math>
|style="background:white;"| &emsp;
|
| <math>dy=\frac{daxb\operatorname d \left(a\ x\ b\right)}{\operatorname d x} \circ dx\operatorname d x = a\,dx \,left(\operatorname d x\right)\ b</math>
|}
 
Line 111 ⟶ 114:
{| class="wikitable"
|-
| <math> \frac{d_\operatorname{d}_{10} axb\left(a\ x\ b\right)}{\operatorname d x} = a </math>
|style="background:white;"| &emsp;
|
| <math> \frac{d_\operatorname{d}_{11} axb\left(a\ x\ b\right)}{\operatorname d x} = b</math>
|}
 
Similarly, for the function {{math|''f''(''x'') {{=}} ''x''<sup>2</sup>''}}, the derivative is
{| class="wikitable"
|-
| <math>\frac{dx\operatorname d x^2}{\operatorname d x}=x \otimes 1 + 1 \otimes x</math>
|style="background:white;"| &emsp;
|
| <math>dy=\frac{dx\operatorname d x^2}{\operatorname d x}\circ dx\operatorname d x = x\,dx \operatorname d x +dx (\,operatorname d x)\ x </math>
|}
 
Line 127 ⟶ 130:
{| class="wikitable"
|-
| <math> \frac{d_\operatorname{d}_{10} x^2 }{\operatorname d x} = x </math>
|style="background:white;"| &emsp;
|
| <math> \frac{d_\operatorname{d}_{11} x^2}{\operatorname d x} = 1 </math>
|-
| <math>\frac{d_\operatorname{d}_{20} x^2 }{\operatorname d x} = 1 </math>
|style="background:white;"| &emsp;
|
| <math>\frac{d_\operatorname{d}_{21} x^2}{\operatorname d x} = x </math>
|}
 
Finally, for the function {{math|''f''(''x'') {{=}} ''x''<sup>−1</sup>}}, the derivative is
{| class="wikitable"
|-
| <math>\frac{dx\operatorname d x^{-1} }{\operatorname d x} = -x^{-1} \otimes x^{-1}</math>
|style="background:white;"| &emsp;
|
| <math>dy=\frac{dx\operatorname d x^{-1} }{\operatorname d x} \circ dx\operatorname d x = -x^{-1}dx(\,operatorname d x)\ x^{-1}</math>
|}
 
Line 147 ⟶ 150:
{| class="wikitable"
|-
| <math>\frac{d_\operatorname{d}_{10} x^{-1} }{\operatorname d x} = -x^{-1} </math>
|style="background:white;"| &emsp;
|
| <math>\frac{d_\operatorname{d}_{11} x^{-1} }{\operatorname d x} = x^{-1} </math>
|}