Quaternionic analysis: Difference between revisions

Content deleted Content added
inserted explanation for the undefined circle operator, added some parens to make boundaries of differential operators clear, minor math typesetting
math typesetting touchups
Line 61:
 
== The derivative for quaternions ==
Since the time of Hamilton, it has been realized that requiring the independence of the [[derivative]] from the path that a differential follows toward zero is too restrictive: it excludes even <math>\ f(q) = q^2\ </math> from differentiation. Therefore, a direction-dependent derivative is necessary for functions of a quaternion variable.<ref>{{harvp|Hamilton|1866|loc=Chapter &nbsp;II, On differentials and developments of functions of quaternions, pp. &nbsp;391–495 }}</ref><ref>{{harvp|Laisant|1881|loc=Chapitre &nbsp;5: Différentiation des Quaternions, pp.&nbsp;104–117 104–117}}</ref>
Considering the increment of [[polynomial function]] of quaternionic argument shows that the increment is a linear map of increment of the argument.{{Dubious|date=March 2019}} From this, a definition can be made:
 
A continuous mapfunction
<math>\ f: \mathbb H \rightarrow \mathbb H\ </math>
is called ''differentiable on the set'' <math>\ U \subset \mathbb H\ ,</math>, if, at every point <math>\ x \in U\ ,</math>, thean increment of the mapfunction <math>\ f\ </math> corresponding to a quaternion increment <math>\ h\ </math> of its argument, can be represented as
: <math> f(x+h) - f(x) = \frac{\operatorname d f(x)}{\operatorname d x} \circ h + o(h)</math>
where
: <math>\frac{\operatorname d f(x)}{\operatorname d x}:\mathbb H\rightarrow\mathbb H</math>
is [[linear map]] of quaternion algebra <math>\ \mathbb H\ ,</math> and
<math>\ o:\mathbb H\rightarrow \mathbb H\ </math>
isrepresents asome continuous map such that
: <math>\lim_{a \rightarrow 0} \frac{\ \left|\ o(a)\ \right|\ }{ \left|\ a\ \right| } = 0\ ,</math>
and the notation <math>\ \circ h\ </math> denotes that the direction-dependent quaternionic derivative is oriented in the direction of the quaternion ...{{mvarexplain|hdate=September 2024}}.
 
The linear map
<math>\frac{\operatorname d f(x)}{\operatorname d x}</math>
is called the derivative of the map <math>\ f ~.</math>.
 
On the quaternions, the derivative may be expressed as
: <math>\frac{\operatorname d f(x)}{\operatorname d x} = \sum_s \frac{\operatorname{d}_{s0} f(x)}{\operatorname d x} \otimes \frac{\operatorname{d}_{s1} f(x)}{\operatorname d x} </math>
Therefore, the differential of the map <math>\ f\ </math> may be expressed as follows, with brackets on either side.
:<math>\frac{\operatorname d f(x)}{\operatorname d x}\circ \operatorname d x = \left(\sum_s \frac{\operatorname{d}_{s0} f(x)}{\operatorname d x} \otimes \frac{\operatorname{d}_{s1} f(x)}{\operatorname d x}\right)\circ \operatorname d x = \sum_s \frac{\operatorname{d}_{s0} f(x)}{\operatorname d x} \left( \operatorname d x \right) \frac{\operatorname{d}_{s1} f(x)}{\operatorname d x}</math>
 
The number of terms in the sum will depend on the function {{mvar|<math>\ f}} ~.</math> The expressions
<math>~~ \frac{\operatorname{d}_{sp}\operatorname d f(x)}{\operatorname d x} ~~ \mathsf{\ for\ } ~~ p = 0, 1 ~~</math> are called
components of derivative.
 
The derivative of a quaternionic function holdsis thedefined followingby the equalitiesexpression
: <math>\frac{\operatorname d f(x)}{\operatorname d x}\circ h = \lim_{t\to 0}\Biglleft(\ t^\frac{-1} \bigl(\ f(x + t\ h) - f(x)\ \bigr)}{ t }\ \Bigrright)</math>
:: where the variable {{mvar|<math>\ t}}\ </math> is reala /real scalar.
 
The following equations then hold:
: <math>\frac{\operatorname d\left( f(x) + g(x) \right)}{\operatorname d x} = \frac{\operatorname d f(x)}{\operatorname d x} + \frac{\operatorname d g(x)}{\operatorname d x}</math>
 
: <math>\frac{\operatorname d\left( f(x)\ g(x)\right)}{\operatorname d x} = \frac{\operatorname d f(x) }{\operatorname d x}\ g(x) + f(x)\ \frac{\operatorname d g(x)}{\operatorname d x}</math>
Line 103 ⟶ 104:
: <math>\frac{\operatorname d \left( a\ f(x)\ b\right)}{\operatorname d x}\circ h = a \left(\frac{\operatorname d f(x)}{\operatorname d x}\circ h\right) b</math>
 
For the function {{<math|''>\ f''(''x'') {{=}} ''a\ x\ b''}}\ ,</math> where <math>\ a\ </math> and <math>\ b\ </math> are constant quaternions, the derivative is
{| class="wikitable"
|-
| <math> \frac{\operatorname d \left( a\ x\ b \right)}{\operatorname d x} = a \otimes b </math>
|style="background:white;"| &emsp;
| <math>dy \operatorname d y=\frac{\operatorname d \left(a\ x\ b\right)}{\operatorname d x} \circ \operatorname d x = a\ \left(\operatorname d x\right)\ b</math>
|}
 
Line 116 ⟶ 117:
| <math> \frac{\operatorname{d}_{10} \left(a\ x\ b\right)}{\operatorname d x} = a </math>
|style="background:white;"| &emsp;
| <math> \frac{\operatorname{d}_{11} \left(a\ x\ b\right)}{\operatorname d x} = b </math>
|}
 
Similarly, for the function {{<math|''>\ f''(''x'') {{=}} ''x''<sup>^2\ ,</supmath>}}, the derivative is
{| class="wikitable"
|-
| <math>\frac{\operatorname d x^2}{\operatorname d x}=x \otimes 1 + 1 \otimes x</math>
|style="background:white;"| &emsp;
| <math>dy\operatorname d y=\frac{\operatorname d x^2}{\operatorname d x}\circ \operatorname d x = x\ \operatorname d x + (\operatorname d x)\ x </math>
|}
 
Line 139 ⟶ 140:
|}
 
Finally, for the function {{ <math|''>\ f''(''x'') = x^{{=}-1}\ ''x''<sup>−1,</supmath>}}, the derivative is
{| class="wikitable"
|-
| <math> \frac{\operatorname d x^{-1} }{\operatorname d x} = -x^{-1} \otimes x^{-1}</math>
|style="background:white;"| &emsp;
| <math>dy \operatorname d y = \frac{\operatorname d x^{-1} }{\operatorname d x} \circ \operatorname d x = -x^{-1}(\operatorname d x)\ x^{-1}</math>
|}