Cosmology Large Angular Scale Surveyor: Difference between revisions

Content deleted Content added
Minor grammatical error fixed.
Citation bot (talk | contribs)
Alter: title, template type. Add: date, bibcode, doi-access, arxiv, chapter-url, chapter, authors 1-1. Removed or converted URL. Removed parameters. Some additions/deletions were parameter name changes. | Use this bot. Report bugs. | Suggested by GoingBatty | Category:CS1 maint: unflagged free DOI | #UCB_Category 24/25
Line 19:
The CLASS instrument is specifically designed to measure polarization. As an [[electromagnetic wave]], light consists of oscillating electric and magnetic fields. These fields can have both an amplitude, or intensity, and a preferred direction in which they oscillate, or polarization. The polarized signal that CLASS will attempt to measure is incredibly small. It is expected to be only a few parts-per-billion change in the polarization of the already-cold 2.725 K CMB.<ref name=apj420_439/> To measure such a small signal, CLASS employs focal plane arrays with large numbers of [[horn antenna|feedhorn]]-coupled, [[transition-edge sensor|transition-edge-sensor]] [[bolometers]] cooled to just 0.1&nbsp;°C above absolute zero by [[Dilution refrigerator|cryogenic helium refrigerators]]. This low temperature reduces the intrinsic thermal noise of the detectors.<ref name=2012SPIE_Eimer/><ref name=2013Eimer_Thesis/><ref name=2014SPIE_Appel/>
 
The other unique aspect of the CLASS telescopes is the use of a variable-delay polarization modulator (VPM) to allow a precise and stable measurement of polarization. The VPM modulates, or turns on and off, the polarized light going to the detector at a known frequency, approximately 10&nbsp;Hz, while leaving unpolarized light unchanged. This allows for a clear separation of the tiny polarization of the CMB from the much larger unpolarized atmosphere by "[[lock-in amplifier|locking in]]" to the 10 [[Hertz|Hz]] signal. The VPM also modulates circular polarization out of phase with linear polarization, giving CLASS sensitivity to [[circular polarization]]. Because no circular polarization is expected in the CMB, the VPM allows for a valuable check for [[systematic errors]] in the data by looking at the circular polarization signal, which should be consistent with zero. In 2024 the VPM for the CLASS 90 GHz telescope was replaced with a rotating reflective [[half-wave plate]] (HWP)<ref>{{Cite journalbook |lastlast1=Shi |firstfirst1=Rui |last2=Brewer |first2=Michael |last3=Chan |first3=Carol |last4=Chuss |first4=David T. |last5=Couto |first5=Jullianna D. |last6=Eimer |first6=Joseph R. |last7=Karakla |first7=John |last8=Shukawa |first8=Koji |last9=Valle |first9=Deniz |last10=Appel |first10=John W. |last11=Bennett |first11=Charles L. |last12=Dahal |first12=Sumit |last13=Essinger-Hileman |first13=Thomas |last14=Marriage |first14=Tobias T. |last15=Petroff |first15=Matthew A. |chapter=Design and characterization of a 60-cm reflective half-wave plate for the CLASS 90 GHZ band telescope |date=2024-08-16 |editor-last=Zmuidzinas |editor-first=Jonas |editor2-last=Gao |editor2-first=Jian-Rong |title=DesignMillimeter, Submillimeter, and characterization of a 60Far-cmInfrared reflectiveDetectors half-waveand plateInstrumentation for theAstronomy CLASS 90 GHz band telescopeXII |chapter-url=https://www.spiedigitallibrary.org/conference-proceedings-of-spie/13102/3016346/Design-and-characterization-of-a-60-cm-reflective-half-wave/10.1117/12.3016346.full |publisher=SPIE |pages=125 |doi=10.1117/12.3016346 |arxiv=2407.08912 |isbn=978-1-5106-7527-8}}</ref> to compare VPM performance to this alternative polarization modulation technology.
 
Because water vapor in the atmosphere emits at microwave frequencies, CLASS will observe from a very dry and high-altitude site in the Andes Mountains on the edge of the Atacama Desert of Chile. Nearby sites have been chosen by other observatories for the same reason, including [[Cosmic Background Imager|CBI]], [[Atacama Submillimeter Telescope Experiment|ASTE]], [[NANTEN2 Observatory|Nanten]], [[Atacama Pathfinder Experiment|APEX]], [[Atacama Large Millimeter Array|ALMA]], [[Atacama Cosmology Telescope|ACT]], and [[POLARBEAR]].
Line 27:
CLASS is currently observing the sky in all four frequency bands. The CLASS 40&nbsp;GHz telescope achieved first light on 8 May 2016 and began a roughly five-year survey in September 2016 after initial commissioning observations were complete. In early 2018, a first 90&nbsp;GHz telescope was installed on the same mount as the 40&nbsp;GHz telescope, achieving first light on 30 May 2018. In 2019, the dual-frequency 150/220&nbsp;GHz telescope was deployed, along with a second telescope mount, and achieved first light on 21 September 2019.
 
CLASS has released results from the first five years of observations with the 40 GHz telescope, through mid-2022, and has made the most sensitive maps covering approximately 74% of the sky in this frequency band at angular scales of approximately 2° to 20°.<ref name=":1">{{Cite journal |lastlast1=Eimer |firstfirst1=Joseph R. |last2=Li 李 |first2=Yunyang 云炀 |last3=Brewer |first3=Michael K. |last4=Shi 时 |first4=Rui 瑞 |last5=Ali |first5=Aamir |last6=Appel |first6=John W. |last7=Bennett |first7=Charles L. |last8=Bruno |first8=Sarah Marie |last9=Bustos |first9=Ricardo |last10=Chuss |first10=David T. |last11=Cleary |first11=Joseph |last12=Dahal |first12=Sumit |last13=Datta |first13=Rahul |last14=Denes Couto |first14=Jullianna |last15=Denis |first15=Kevin L. |date=2024-03-01 |title=CLASS Angular Power Spectra and Map-component Analysis for 40 GHz Observations through 2022 |url=https://iopscience.iop.org/article/10.3847/1538-4357/ad1abf |journal=The Astrophysical Journal |volume=963 |issue=2 |pages=92 |doi=10.3847/1538-4357/ad1abf |doi-access=free |arxiv=2309.00675 |bibcode=2024ApJ...963...92E |issn=0004-637X}}</ref><ref>{{Cite journal |lastlast1=Li 李 |firstfirst1=Yunyang 云炀 |last2=Eimer |first2=Joseph R. |last3=Osumi |first3=Keisuke |last4=Appel |first4=John W. |last5=Brewer |first5=Michael K. |last6=Ali |first6=Aamir |last7=Bennett |first7=Charles L. |last8=Bruno |first8=Sarah Marie |last9=Bustos |first9=Ricardo |last10=Chuss |first10=David T. |last11=Cleary |first11=Joseph |last12=Couto |first12=Jullianna Denes |last13=Dahal |first13=Sumit |last14=Datta |first14=Rahul |last15=Denis |first15=Kevin L. |date=2023-10-01 |title=CLASS Data Pipeline and Maps for 40 GHz Observations through 2022 |url=https://iopscience.iop.org/article/10.3847/1538-4357/acf293 |journal=The Astrophysical Journal |volume=956 |issue=2 |pages=77 |doi=10.3847/1538-4357/acf293 |doi-access=free |arxiv=2305.01045 |bibcode=2023ApJ...956...77L |issn=0004-637X}}</ref>
 
CLASS has made a first detection of [[circular polarization]] from the atmosphere at a frequency of 40&nbsp;GHz, which is in agreement with models of atmospheric circular polarization due to [[Zeeman effect|Zeeman splitting]] of [[Allotropes of oxygen|molecular oxygen]] in the presence of the Earth's magnetic field.<ref>{{Cite journal|last1=Petroff|first1=Matthew A.|last2=Eimer|first2=Joseph R.|last3=Harrington|first3=Kathleen|last4=Ali|first4=Aamir|last5=Appel|first5=John W.|last6=Bennett|first6=Charles L.|last7=Brewer|first7=Michael K.|last8=Bustos|first8=Ricardo|last9=Chan|first9=Manwei|last10=Chuss|first10=David T.|last11=Cleary|first11=Joseph|date=2020-01-30|title=Two-year Cosmology Large Angular Scale Surveyor (CLASS) Observations: A First Detection of Atmospheric Circular Polarization at Q band|journal=The Astrophysical Journal|volume=889|issue=2|pages=120|doi=10.3847/1538-4357/ab64e2|issn=1538-4357|arxiv=1911.01016|bibcode=2020ApJ...889..120P |s2cid=207870198 |doi-access=free }}</ref> The atmospheric circular polarization is smoothly-varying over the sky, allowing it to be separated from celestial circular polarization. This has allowed CLASS to constrain celestial circular polarization at 40&nbsp;GHz to be less than 0.1 μK at angular scales of 5 degrees and less than 1 μK at angular scales around 1 degree.<ref name=":1" /><ref>{{Cite journal|last1=Padilla|first1=Ivan L.|last2=Eimer|first2=Joseph R.|last3=Li|first3=Yunyang|last4=Addison|first4=Graeme E.|last5=Ali|first5=Aamir|last6=Appel|first6=John W.|last7=Bennett|first7=Charles L.|last8=Bustos|first8=Ricardo|last9=Brewer|first9=Michael K.|last10=Chan|first10=Manwei|last11=Chuss|first11=David T.|date=2020-01-29|title=Two-year Cosmology Large Angular Scale Surveyor (CLASS) Observations: A Measurement of Circular Polarization at 40 GHz|journal=The Astrophysical Journal|volume=889|issue=2|pages=105|doi=10.3847/1538-4357/ab61f8|issn=1538-4357|arxiv=1911.00391|bibcode=2020ApJ...889..105P |s2cid=207870170 |doi-access=free }}</ref> This is an improvement upon previous limits on circular polarization in the CMB by more than a factor of 100.<ref>{{Cite journal|last1=Mainini|first1=R.|last2=Minelli|first2=D.|last3=Gervasi|first3=M.|last4=Boella|first4=G.|last5=Sironi|first5=G.|last6=Baú|first6=A.|last7=Banfi|first7=S.|last8=Passerini|first8=A.|last9=Lucia|first9=A. De|last10=Cavaliere|first10=F.|date=August 2013|title=An improved upper limit to the CMB circular polarization at large angular scales|journal=Journal of Cosmology and Astroparticle Physics|language=en|volume=2013|issue=8|pages=033|doi=10.1088/1475-7516/2013/08/033|issn=1475-7516|arxiv=1307.6090|bibcode=2013JCAP...08..033M |s2cid=119236025}}</ref><ref>{{Cite journal|last1=Nagy|first1=J. M.|last2=Ade|first2=P. A. R.|last3=Amiri|first3=M.|last4=Benton|first4=S. J.|last5=Bergman|first5=A. S.|last6=Bihary|first6=R.|last7=Bock|first7=J. J.|last8=Bond|first8=J. R.|last9=Bryan|first9=S. A.|last10=Chiang|first10=H. C.|last11=Contaldi|first11=C. R.|date=August 2017|title=A New Limit on CMB Circular Polarization from SPIDER|journal=The Astrophysical Journal|language=en|volume=844|issue=2|pages=151|doi=10.3847/1538-4357/aa7cfd|arxiv=1704.00215 |bibcode=2017ApJ...844..151N |issn=0004-637X|hdl=10852/60193|s2cid=13694135|hdl-access=free |doi-access=free }}</ref>
 
CLASS has also placed unique constraints on the disk-averaged microwave temperature of Venus in the 40 and 90 GHz frequency bands, which is sensitive to the composition of the Venusian atmosphere.<ref>{{Cite journal |lastlast1=Dahal |firstfirst1=Sumit |last2=Brewer |first2=Michael K. |last3=Appel |first3=John W. |last4=Ali |first4=Aamir |last5=Bennett |first5=Charles L. |last6=Bustos |first6=Ricardo |last7=Chan |first7=Manwei |last8=Chuss |first8=David T. |last9=Cleary |first9=Joseph |last10=Couto |first10=Jullianna D. |last11=Datta |first11=Rahul |last12=Denis |first12=Kevin L. |last13=Eimer |first13=Joseph |last14=Espinoza |first14=Francisco |last15=Essinger-Hileman |first15=Thomas |date=2021-04-01 |title=Venus Observations at 40 and 90 GHz with CLASS |url=https://iopscience.iop.org/article/10.3847/PSJ/abedad |journal=The Planetary Science Journal |volume=2 |issue=2 |pages=71 |doi=10.3847/PSJ/abedad |doi-access=free |arxiv=2010.12739 |bibcode=2021PSJ.....2...71D |issn=2632-3338}}</ref><ref>{{Cite journal |lastlast1=Dahal |firstfirst1=Sumit |last2=Brewer |first2=Michael K. |last3=Akins |first3=Alex B. |last4=Appel |first4=John W. |last5=Bennett |first5=Charles L. |last6=Bustos |first6=Ricardo |last7=Cleary |first7=Joseph |last8=Couto |first8=Jullianna D. |last9=Datta |first9=Rahul |last10=Eimer |first10=Joseph |last11=Essinger-Hileman |first11=Thomas |last12=Iuliano |first12=Jeffrey |last13=Li 李 |first13=Yunyang 云炀 |last14=Marriage |first14=Tobias A. |last15=Núñez |first15=Carolina |date=2023-08-01 |title=Microwave Observations of Venus with CLASS |url=https://iopscience.iop.org/article/10.3847/PSJ/acee76 |journal=The Planetary Science Journal |volume=4 |issue=8 |pages=154 |doi=10.3847/PSJ/acee76 |doi-access=free |arxiv=2304.07367 |bibcode=2023PSJ.....4..154D |issn=2632-3338}}</ref>
 
== See also ==
Line 42:
 
{{Reflist|refs=
<ref name=CLASS_website>{{cite web |title=CLASS: Cosmology Large Angular Scale Surveyor |date=10 September 2013 |url=http://sites.krieger.jhu.edu/class/ |publisher=The Johns Hopkins University |accessdate=2015-08-12}}</ref>
<ref name=2014SPIE_EH>{{cite journal |doi=10.1117/12.2056701 |title=CLASS: the cosmology large angular scale surveyor |journal=Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series |year=2014 |author= Essinger-Hileman, T. E. |volume=9153 |series=Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy VII |editor1-last=Holland |editor1-first=Wayne S. |editor2-last=Zmuidzinas |editor2-first=Jonas |pages=91531I |arxiv = 1408.4788 |display-authors=etal|bibcode=2014SPIE.9153E..1IE |s2cid=13691600 }}</ref>
<ref name=2014SPIE_Appel>{{cite journal |doi=10.1117/12.2056530 |title=The cosmology large angular scale surveyor (CLASS): 38-GHz detector array of bolometric polarimeters |journal=Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series |year=2014 |author= Appel J. W. |volume=9153 |series=Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy VII |editor1-last=Holland |editor1-first=Wayne S. |editor2-last=Zmuidzinas |editor2-first=Jonas |pages=91531J |arxiv = 1408.4789 |display-authors=etal|bibcode=2014SPIE.9153E..1JA |s2cid=52233099 }}</ref>
Line 49:
<ref name=Photonics-CLASS-Article>{{cite web |title=ARRA to Help Build Telescope |url=http://photonics.com/Article.aspx?AID=41508 |publisher=Photonics Media |accessdate=2014-01-15}}</ref>
<ref name=JHUGazette-CLASS-Article>{{cite web |title=Astrophysicist, team win stimulus grant to build telescope |url=http://archive.gazette.jhu.edu/2010/03/15/astrophysicist-team-win-stimulus-grant-to-build-telescope/ |publisher=The Johns Hopkins University |accessdate=2014-01-15 |archive-url=https://web.archive.org/web/20121214140753/http://archive.gazette.jhu.edu/2010/03/15/astrophysicist-team-win-stimulus-grant-to-build-telescope/ |archive-date=2012-12-14 |url-status=dead }}</ref>
<ref name=JHUGazette-CLASS-Article-2014>{{cite web |title=Johns Hopkins astrophysics team builds telescope to study origins of the universe |date=27 May 2014 |url=http://hub.jhu.edu/2014/05/27/class-telescope-bennett-marriage |publisher=The Johns Hopkins University |accessdate=2014-05-27}}</ref>
<ref name=Conicyt-Astronomy-Roadmap-CLASS>{{cite web |title=Astronomy, Technology, Industry: Roadmap for the Fostering of Technology Development and Innovation in the Field of Astronomy in Chile |url=http://www.conicyt.cl/astronomia/files/2012/10/Roadmap-Astronom%C3%ADa-25.10.12.pdf |publisher=Conicyt Ministry of Education, Government of Chile |accessdate=2014-02-10}}</ref>
<ref name=2014-Linde-Inflation-Overview>{{cite arXiv | title=Inflationary Cosmology after Planck 2013 |year=2014 |last1=Linde |first1=A. | eprint=1402.0526 |class=hep-th }}</ref>