Content deleted Content added
m Modified references URLs to point to free resources Tag: Reverted |
Restored revision 1242961509 by Faegd (talk): Reeks of WP:REFSPAM |
||
Line 7:
The edges may be directed or undirected. For example, if the vertices represent people at a party, and there is an edge between two people if they shake hands, then this graph is undirected because any person ''A'' can shake hands with a person ''B'' only if ''B'' also shakes hands with ''A''. In contrast, if an edge from a person ''A'' to a person ''B'' means that ''A'' owes money to ''B'', then this graph is directed, because owing money is not necessarily reciprocated.
Graphs are the basic subject studied by graph theory. The word "graph" was first used in this sense by [[James Joseph Sylvester|J. J. Sylvester]] in 1878 due to a direct relation between mathematics and [[chemical structure]] (what he called a chemico-graphical image).<ref>See:▼
▲The word "graph" was first used in this sense by [[James Joseph Sylvester|J. J. Sylvester]] in 1878 due to a direct relation between mathematics and [[chemical structure]] (what he called a chemico-graphical image).<ref>See:
* J. J. Sylvester (February 7, 1878) [https://books.google.com/books?id=KcoKAAAAYAAJ&q=Sylvester&pg=PA284 "Chemistry and algebra"], {{Webarchive|url=https://web.archive.org/web/20230204142956/https://books.google.com/books?id=KcoKAAAAYAAJ&vq=Sylvester&pg=PA284 |date=2023-02-04 }} ''Nature'', ''17'' : 284. {{doi|10.1038/017284a0}}. From page 284: "Every invariant and covariant thus becomes expressible by a ''graph'' precisely identical with a Kekuléan diagram or chemicograph."
* J. J. Sylvester (1878) [https://books.google.com/books?id=1q0EAAAAYAAJ&pg=PA64 "On an application of the new atomic theory to the graphical representation of the invariants and covariants of binary quantics, – with three appendices"], {{Webarchive|url=https://web.archive.org/web/20230204142957/https://books.google.com/books?id=1q0EAAAAYAAJ&pg=PA64 |date=2023-02-04 }} ''American Journal of Mathematics, Pure and Applied'', ''1'' (1) : 64–90. {{doi|10.2307/2369436}}. {{JSTOR|2369436}}. The term "graph" first appears in this paper on page 65.</ref><ref>{{Cite book
Line 53 ⟶ 27:
== Definitions ==
Definitions in graph theory vary. The following are some of the more basic ways of defining graphs and related [[mathematical structure]]s.
Line 61 ⟶ 33:
A '''graph''' (sometimes called an ''undirected graph'' to distinguish it from a [[#Directed graph|directed graph]], or a ''simple graph'' to distinguish it from a [[multigraph]]){{sfn|Bender|Williamson|2010|p=148}}<ref>See, for instance, Iyanaga and Kawada, ''69 J'', p. 234 or Biggs, p. 4.</ref> is a [[ordered pair|pair]] {{math|1=''G'' = (''V'', ''E'')}}, where {{mvar|V}} is a set whose elements are called ''vertices'' (singular: vertex), and {{mvar|E}} is a set of unordered pairs <math>\{v_1, v_2\}</math> of vertices, whose elements are called ''edges'' (sometimes ''links'' or ''lines'').
The vertices {{mvar|u}} and {{mvar|v}} of an edge {{math|{''u'', ''v''} }} are called the edge's ''endpoints''. The edge is said to ''join'' {{mvar|u}} and {{mvar|v}} and to be ''incident'' on them. A vertex may belong to no edge, in which case it is not joined to any other vertex and is called ''isolated''. When an edge <math>\{u,v\}</math> exists, the vertices {{mvar|u}} and {{mvar|v}} are called ''adjacent''.
|