Content deleted Content added
Changing short description from "Study of algorithms using numerical approximation" to "Methods for numerical approximations" |
Tag: Reverted |
||
Line 161:
Another fundamental problem is computing the solution of some given equation. Two cases are commonly distinguished, depending on whether the equation is linear or not. For instance, the equation <math>2x+5=3</math> is linear while <math>2x^2+5=3</math> is not.
Much effort has been put in the development of methods for solving [[systems of linear equations]]. Standard direct methods,
[[Root-finding algorithm]]s are used to solve nonlinear equations (they are so named since a root of a function is an argument for which the function yields zero). If the function is [[derivative|differentiable]] and the derivative is known, then Newton's method is a popular choice.<ref>{{cite book |last1=Ezquerro Fernández |first1=J.A. |last2=Hernández Verón |first2=M.Á. |title=Newton's method: An updated approach of Kantorovich's theory |publisher=Birkhäuser |date=2017 |isbn=978-3-319-55976-6 |url={{GBurl|A3orDwAAQBAJ|pg=PR11}}}}</ref><ref>{{cite book |first=Peter |last=Deuflhard |title=Newton Methods for Nonlinear Problems. Affine Invariance and Adaptive Algorithms |publisher=Springer |edition=2nd |series=Computational Mathematics |volume=35 |date=2006 |isbn=978-3-540-21099-3 |url={{GBurl|l20xK__HG_kC|pg=PP1}} }}</ref> [[Linearization]] is another technique for solving nonlinear equations.
|