Locally recoverable code: Difference between revisions

Content deleted Content added
Submitting using AfC-submit-wizard
Citation bot (talk | contribs)
Altered pages. Add: issue, volume, journal, arxiv, isbn, chapter. Removed parameters. Formatted dashes. Some additions/deletions were parameter name changes. | Use this bot. Report bugs. | Suggested by Eastmain | Category:AfC pending submissions by age/1 day ago | #UCB_Category 44/71
Line 6:
 
Locally Recoverable Codes are a family of error correction codes that were introduced first by D. S. Papailiopoulos and A. G. Dimakis<ref>{{Citation
|first1=Dimitris S.|last1=Papailiopoulos |first2=Alexandros G. |last2=Dimakis |title="Locally Repairable Codes" |chapter=Locally repairable codes |pages=2771-27752771–2775 |___location=Cambridge, MA, USA |publisher=IEEE International Symposium on Information Theory |date=2012 |doi=10.1109/ISIT.2012.6284027|isbn=978-1-4673-2579-0 }}</ref> and have been widely studied in Information theory due to their applications related to Distributive and Cloud Storage Systems.
<ref>{{Citation
|first1=A.
Line 15:
|last3=Vlăduţ
|title="Locally recoverable codes on algebraic curves"
|chapter=Locally recoverable codes on algebraic curves
|pages=1252-1256
|pages=1252–1256
|___location=Hong Kong, China
|publisher=IEEE International Symposium on Information Theory
|date=2015
|doi=10.1109/ISIT.2015.7282656
|arxiv=1603.08876
|isbn=978-1-4673-7704-1
}}</ref>
<ref>{{Citation
Line 27 ⟶ 30:
|last2=Mazumdar
|title="Bounds on the Size of Locally Recoverable Codes"
|pages=5787-57945787–5794
|publisherjournal=IEEE Transactions on Information Theory
|date=2015
|volume=61
|issue=11
|doi=10.1109/TIT.2015.2477406
}}</ref>
Line 40 ⟶ 45:
|last3=Micheli
|title="Optimal selection for good polynomials of degree up to five"
|journal=Designs, Codes and Cryptography
|pages=1427-1436
|pages=1427–1436
|date=2022
|volume=90
|issue=6
|doi= 10.1007/s10623-022-01046-y
}}</ref>
Line 65 ⟶ 73:
 
Let <math>C</math> be an <math>[n, k, d]_{q}</math>-locally recoverable code. Then an erased component can be recovered linearly<ref>{{Citation
|first1=Dimitris S.|last1=Papailiopoulos |first2=Alexandros G. |last2=Dimakis |title="Locally Repairable Codes" |chapter=Locally repairable codes |pages=2771-27752771–2775 |___location=Cambridge, MA, USA |publisher=IEEE International Symposium on Information Theory |date=2012 |doi=10.1109/ISIT.2012.6284027|isbn=978-1-4673-2579-0 }}</ref>, i.e. for every <math>i \in \{1, \ldots, n\}</math>, the space of linear equations of the code contains elements of the form <math> x_{i} = f(x_{i_{1}}, \ldots, x_{i_{r}})</math>, where <math>i_{j} \neq i</math>.
 
==Optimal Locally Recoverable Codes==
 
'''Theorem'''<ref>{{Citation
|first1=V. |last1=Cadambe |first2=A. |last2=Mazumdar |title="An upper bound on the size of locally recoverable codes" |chapter=An upper bound on the size of locally recoverable codes |pages=1-51–5 |___location=Calgary, AB, Canada |publisher=International Symposium on Network Coding |date=2013 |doi=10.1109/NetCod.2013.6570829|arxiv=1308.3200 |isbn=978-1-4799-0823-3 }}</ref> Let <math>n = (r+1)s</math> and let <math>C</math> be an <math>[n, k, d]_{q}</math>-locally recoverable code having <math>s</math> disjoint locality sets of size <math>r+1</math>. Then <div style="text-align: center;"><math>d \leq n - k - \left\lceil\frac{k}{r}\right\rceil + 2</math></div>
 
An <math>[n, k, d, r]_{q}</math>-LRC <math>C</math> is said to be optimal if the minimum distance of <math>C</math> satisfies <div style="text-align: center;"><math>d = n - k - \left\lceil\frac{k}{r}\right\rceil + 2</math></div>
Line 89 ⟶ 97:
 
We say that {<math>A_{1},\ldots,A_{\ell}</math>} is a splitting covering for <math>f</math><ref>{{Citation |first1=G.
|last1=Micheli |title="Constructions of Locally Recoverable Codes Which are Optimal" |pages=167-175167–175 |publisherjournal=IEEE Transactions on Information Theory |date=2020 |volume=66 |doi=10.1109/TIT.2019.2939464
|arxiv=1806.11492 }}</ref>.
 
=== Tamo--Barg Construction ===
 
The Tamo--Barg construction utilizes good polynomials.<ref>{{Citation
|first1=I.|last1=Tamo |first2=A. |last2=Barg |title="A family of optimal locally recoverable code" |chapter=A family of optimal locally recoverable codes |pages=686-690686–690 |___location=Honolulu, HI, USA |publisher=IEEE International Symposium on Information Theory |date=2014 |doi=10.1109/ISIT.2014.6874920|isbn=978-1-4799-5186-4 }}</ref>
:• Suppose that a <math>(r, \ell)</math>-good polynomial <math>f(x)</math> over <math>\mathbb F_{q}</math> is given with splitting covering <math>i \in \{1, \ldots, \ell\}</math>.
:• Let <math>s</math> ≤ <math>\ell-1</math> be a positive integer.
Line 143 ⟶ 151:
 
'''Definition'''<ref>{{Citation
|first1=P. |last1=Huang |first2=E. |last2=Yaakobi |first3=H.|last3=Uchikawa |first4=P.H.|last4=Siegel |title="Linear locally repairable codes with availability" |chapter=Linear locally repairable codes with availability |pages=1871-18751871–1875 |___location=Hong Kong, China |publisher=IEEE International Symposium on Information Theory |date=2015 |doi=10.1109/ISIT.2015.7282780|isbn=978-1-4673-7704-1 }}</ref> A code <math>C</math> has all-symbol locality <math>r</math> and availability <math>t</math> if every code symbol can be recovered from <math>t</math> disjoint repair sets of other symbols, each set of size at most <math>r</math> symbols. Such codes are called <math>(r,t)_a</math>-LRC.
 
'''Theorem'''<ref>{{Citation |first1=I. |last1=Tamo |first2=A. |last2=Barg |title="Bounds on locally recoverable codes with multiple recovering sets" |chapter=Bounds on locally recoverable codes with multiple recovering sets |pages=691-695691–695 |___location=Honolulu, HI, USA |publisher=2014 IEEE International Symposium on Information Theory |date=2014 |doi=10.1109/ISIT.2014.6874921|arxiv=1402.0916 |isbn=978-1-4799-5186-4 }}</ref> The minimum distance of <math>[n,k,d]_q</math>-LRC having locality <math>r</math> and availability <math>t</math> satisfies the upper bound
 
<div style="text-align: center;"><math>d \leq n - \sum_{i=0}^{t} \left\lfloor\frac{k-1}{r^i}\right\rfloor</math></div>.
Line 152 ⟶ 160:
 
'''Theorem'''<ref>{{Citation
|first1=A. |last1=Wang |first2=Z. |last2=Zhang |title="Repair locality with multiple erasure tolerance" |pages=6979-69876979–6987 |publisherjournal=IEEE Transactions on Information Theory |date=2014 |volume=60 |issue=11 |doi=10.1109/TIT.2014.2351404|arxiv=1306.4774 }}</ref> The minimum distance d of an <math>[n,k,d]_q</math> linear <math>(r,t)_i</math>-LRC satisfies the upper bound
 
<div style="text-align: center;"><math>d \leq n-k-\left\lceil\frac{t(k-1)+1}{t(r-1)+1}\right\rceil+2</math></div>.