Content deleted Content added
Reverted edit based on: MOS:LAYOUT WP:V and WP:NOTTEXTBOOK |
removed inappropriate reference. Moved connection with Parseval's theorem to the top of the article. Removed redundant phrasing |
||
Line 1:
{{Short description|Theorem in harmonic analysis}}
In [[mathematics]], the '''Plancherel theorem''' (sometimes called the
The theorem states that the integral of a function's [[squared modulus]] is equal to the integral of the squared modulus of its [[frequency spectrum]]. That is, if <math>f(x) </math> is a function on the real line, and <math>\widehat{f}(\xi)</math> is its frequency spectrum, then
{{Equation box 1
|indent =
Line 10 ⟶ 12:
|background colour=#F5FFFA}}
A more precise formulation is that if a function is in both [[Lp space|''L''<sup>''p''</sup> spaces]] <math>L^1(\mathbb{R})</math> and <math>L^2(\mathbb{R})</math>, then its
Plancherel's theorem remains valid as stated on ''n''-dimensional [[Euclidean space]] <math>\mathbb{R}^n</math>. The theorem also holds more generally in [[locally compact abelian group]]s. There is also a version of the Plancherel theorem which makes sense for non-commutative locally compact groups satisfying certain technical assumptions. This is the subject of [[non-commutative harmonic analysis]].
Due to the [[polarization identity]], one can also apply Plancherel's theorem to the [[Lp space|<math>L^2(\mathbb{R})</math>]] [[inner product]] of two functions. That is, if <math>f(x)</math> and <math>g(x)</math> are two <math>L^2(\mathbb{R})</math> functions, and <math> \mathcal P</math> denotes the Plancherel transform, then
|