Content deleted Content added
ClueBot NG (talk | contribs) m Reverting possible vandalism by Shoshannah Tekofsky to version by Alan U. Kennington. Report False Positive? Thanks, ClueBot NG. (4348739) (Bot) |
m Updated link again again. Footnote 10. |
||
Line 8:
Although action potentials can vary somewhat in duration, [[amplitude]] and shape, they are typically treated as identical stereotyped events in neural coding studies. If the [[Brief-spike|brief duration]] of an action potential (about 1 ms) is ignored, an action potential sequence, or spike train, can be characterized simply by a series of [[all-or-none law|all-or-none]] point events in time.<ref name="Gerstner">{{cite book|author-link1=Wulfram Gerstner |first1=Wulfram |last1=Gerstner |first2=Werner M. |last2=Kistler |title=Spiking Neuron Models: Single Neurons, Populations, Plasticity |url=https://books.google.com/books?id=Rs4oc7HfxIUC |year=2002 |publisher=Cambridge University Press |isbn=978-0-521-89079-3}}</ref> The lengths of interspike intervals ([[Temporal coding|ISI]]s) between two successive spikes in a spike train often vary, apparently randomly.<ref name="Stein">{{cite journal |vauthors=Stein RB, Gossen ER, Jones KE |title=Neuronal variability: noise or part of the signal? |journal=Nat. Rev. Neurosci. |volume=6 |issue=5 |pages=389–97 |date=May 2005 |pmid=15861181 |doi=10.1038/nrn1668 |s2cid=205500218 }}</ref> The study of neural coding involves measuring and characterizing how stimulus attributes, such as light or sound intensity, or motor actions, such as the direction of an arm movement, are represented by neuron action potentials or spikes. In order to describe and analyze neuronal firing, [[statistical methods]] and methods of [[probability theory]] and stochastic [[point process]]es have been widely applied.
With the development of large-scale neural recording and decoding technologies, researchers have begun to crack the neural code and have already provided the first glimpse into the real-time neural code as memory is formed and recalled in the hippocampus, a brain region known to be central for memory formation.<ref>The Memory Code. http://www.scientificamerican.com/article/the-memory-code/</ref><ref>{{cite journal | last1 = Chen | first1 = G | last2 = Wang | first2 = LP | last3 = Tsien | first3 = JZ | year = 2009 | title = Neural population-level memory traces in the mouse hippocampus | journal = PLOS ONE | volume = 4 | issue = 12| page = e8256 | doi = 10.1371/journal.pone.0008256 | pmid = 20016843 | pmc=2788416| bibcode = 2009PLoSO...4.8256C | doi-access = free }}</ref><ref>{{cite journal | last1 = Zhang | first1 = H | last2 = Chen | first2 = G | last3 = Kuang | first3 = H | last4 = Tsien | first4 = JZ | date = Nov 2013 | title = Mapping and deciphering neural codes of NMDA receptor-dependent fear memory engrams in the hippocampus | journal = PLOS ONE | volume = 8 | issue = 11| page = e79454 | doi = 10.1371/journal.pone.0079454 | pmid = 24302990 | pmc=3841182| bibcode = 2013PLoSO...879454Z | doi-access = free }}</ref> Neuroscientists have initiated several large-scale brain decoding projects.<ref>Brain Decoding Project. http://
== Encoding and decoding ==
|