Content deleted Content added
ClueBot III (talk | contribs) m Archiving 1 discussion to Talk:Plum pudding model/Archive 1. (BOT) |
|||
Line 202:
==Positive units==
{{ping|Johnjbarton"|Tjlafave}} In his 1910 paper, Thomson presented an equation that modeled beta scattering in the scenario where the positive charge exists in discrete units.
<math display="block">\bar{\theta}_2 = \frac{16}{5} \cdot \frac{k q_e q_e}{m v^2} \cdot \frac{1}{R} \cdot \sqrt{\frac{3N}{2}} \sqrt{1 - \left (1 - \frac{\pi}{8} \right ) \sqrt{\sigma}}</math>
Heilbron doesn't offer a guess as to how Thomson came up with this equation. Thomson doesn't call these units particles and I assume they're just as permeable as the positive sphere. If the positive charge units were particles then a direct collision would affect an alpha particle much differently. Is it correct of me to say that Thomson came close to deducing the existence of the proton? Rutherford deduced the existence of protons based on charge numbers of atoms. Interactions between particles is not just a question of electric fields because neutrons can split nucleui.
It's strange that Thomson did not propose the existence of the proton in his atomic model. Wasn't there enough information at the time to suggest the existence of protons if not prove them? Physicists at the time speculated on the existence of "positive electrons" that carried the elementary unit of positive charge just as negative electrons carry the elementary negative charge. Hydrogen ions and alpha particles were positively-charged particles. Thomson did not know exactly how many electrons were in an atom so perhaps a hydrogen ion could contain some remaining electrons. [[User:Kurzon|Kurzon]] ([[User talk:Kurzon|talk]]) 20:41, 12 October 2024 (UTC)
|