Microwave analog signal processing: Difference between revisions

Content deleted Content added
Nikfal (talk | contribs)
mNo edit summary
Nikfal (talk | contribs)
mNo edit summary
Line 4:
The surging demand for higher [[spectral efficiency]] in radio has spurred a renewed interest in analog real-time components and systems beyond conventional purely [[digital signal processing]] techniques. Although they are unrivaled at low microwave frequencies, due to their high flexibility, compact size, low cost and strong reliability, digital devices suffer of major issues, such as poor performance, high cost of A/D and D/A converters and excessive power consumption, at higher microwave and millimeter-wave frequencies. At such frequencies, analog devices and related real-time or [[analog signal processing]] (ASP) systems, which manipulate broadband signals in the time ___domain, may be far preferable, as they offer the benefits of lower complexity and higher speed, which may offer unprecedented solutions in the major areas of [[radio engineering]], including communications, but also radars, sensors, instrumentation and imaging. This new technology might be seen as microwave and millimeter-wave counterpart of ultra-fast optics signal processing,<ref>{{cite book|last1=Teich|first1=Bahaa E. A. Saleh; Malvin Carl|last2=Teich|first2=M. C.|title=Fundamentals of photonics|date=2007|publisher=Wiley-Interscience|___location=Hoboken, [u.a.]|isbn=978-0471358329|edition=2.}}</ref> and has been recently enabled by a wide range of novel phasers, that are components following arbitrary group delay versus frequency responses.
 
=== '''Applications:''' ===
{| class="wikitable"
 
|+R-ASP Applications
!Radio Communication
!Sensing and Detection
!General Purpose
|-
|Impulse Radio
FDM Receiver
Dispersion Code Multiple Access
|Spectrum Sniffer
Frequency Sector Detection
RFID
RADAR
|Signal Compressor
Non-Linear Phase Shifter
Distortion Equalizer
|}
'''RFID System<ref>S. Gupta, B. Nikfal and C. Caloz, "Chipless RFID System Based on Group Delay Engineered Dispersive Delay Structures," in ''IEEE Antennas and Wireless Propagation Letters'', vol. 10, pp. 1366-1368, 2011, doi: 10.1109/LAWP.2011.2178058. keywords: {Radiofrequency identification;Delay;Dispersion;Time ___domain analysis;Microwave circuits;Encoding;All-pass networks;analog signal processing;dispersive delay structures (DDSs);group delay engineering;radio frequency identification (RFID)},</ref>:'''