Content deleted Content added
→Applications: ce |
|||
Line 44:
Binary tilings were first studied mathematically in 1974 by {{ill|Károly Böröczky|hu|Böröczky Károly (matematikus, 1964)}}.{{r|radin|agol|bor}} Böröczky was investigating the density of a discrete planar point set, the average number of points per unit area. This quantity is used, for instance, to study [[Danzer set]]s. For points placed one per tile in a [[monohedral tiling]] of the Euclidean plane, the density is inverse to the tile area. But for the hyperbolic plane, paradoxical issues ensue.{{r|radin|bor}} The tiles of a binary tiling can be grouped into three-tile subunits, with each subunit consisting of one tile above two more (as viewed in the Poincaré half-plane model). Points centered within the upper tile of each subunit have one point per subunit, for an apparent density equal to one third of the area of a binary tile. However, the same points and the same binary tiling can be regrouped in a different way, with two points per subunit, centered in the two lower tiles of each subunit, with two times the apparent density. This example shows that it is not possible to determine the density of a hyperbolic point set from tilings in this way.{{r|bor|bowen}}
Another application involves the area of tiles in a monohedral tiling.
==Related patterns==
|