Content deleted Content added
Added the proof of the theorem for single-variable functions |
Correct typo in single-variable proof |
||
Line 80:
In particular,<math display="block">f'(x) > \dfrac{f'(x_0)}{2} >0 \qquad \text{for all } |x - x_0| < r.</math>
This shows that <math>f</math> is strictly increasing for all <math>|x - x_0| < r</math>. Let <math>\delta > 0</math> be such that <math>\delta < r</math>. Then <math>[x - \delta, x + \delta] \subseteq (x_0 - r, x_0 + r)</math>. By the intermediate value theorem, we find that <math>f</math> maps the interval <math>[x - \delta, x + \delta]</math> bijectively onto <math>[f(x - \delta), f(x + \delta)]</math>. Denote by <math>I = (x-\delta, x+\delta)</math> and <math>J = (f(x - \delta),f(x + \delta))</math>. Then <math>f: I \to J</math> is a bijection and the inverse <math>f^{-1}:
=== A proof using successive approximation ===
|