Wave function collapse: Difference between revisions

Content deleted Content added
History: Schlosshauer (2005) is a journal article, not a book
History: let's try this
Line 81:
==History==
The concept of wavefunction collapse was introduced by [[Werner Heisenberg]] in his 1927 paper on the [[uncertainty principle]], "Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik", and incorporated into the [[mathematical formulation of quantum mechanics]] by [[John von Neumann]], in his 1932 treatise ''Mathematische Grundlagen der Quantenmechanik''.<ref>{{cite arXiv |author=C. Kiefer |year=2002 |title=On the interpretation of quantum theory—from Copenhagen to the present day |eprint=quant-ph/0210152 }}</ref> Heisenberg did not try to specify exactly what the collapse of the wavefunction meant. However, he emphasized that it should not be understood as a physical process.<ref>{{cite journal |author=G. Jaeger |year=2017 |title="Wave-Packet Reduction" and the Quantum Character of the Actualization of Potentia |journal=Entropy |volume=19 |issue=10 |pages=13
|doi=10.3390/e19100513|bibcode=2017Entrp..19..513J |doi-access=free }}</ref> Niels Bohr never mentions wave function collapse in his published work, but he repeatedly cautioned that we must give up a "pictorial representation". Despite the differences between Bohr and Heisenberg, their views are often grouped together as the "Copenhagen interpretation", of which wave function collapse is regarded as a key feature.<ref>{{cite journal|title=Niels Bohr on the wave function and the classical/quantum divide |author=Henrik Zinkernagel |year=2016 |doi=10.1016/j.shpsb.2015.11.001 |journal=Studies in History and Philosophy of Modern Physics |volume=53 |pages=9–19 |arxiv = 1603.00353|bibcode=2016SHPMP..53....9Z |s2cid=18890207 |quote=Among Bohr scholars it is common to assert that Bohr never mentions the wave function collapse (see e.g. Howard, 2004 and Faye, 2008). It is true that in Bohr’s published writings, he does not discuss the status or existence of this standard component in the popular image of the Copenhagen interpretation. }}</ref>
 
[[John von Neumann]]'s influential 1932 work ''[[Mathematical Foundations of Quantum Mechanics]]'' took a more formal approach, developing an "ideal" measurement scheme<ref name=HartleQMCosmology>Hartle, James B. [https://arxiv.org/pdf/1805.12246.pdf "The quantum mechanics of cosmology."] Notes from the lectures by the author at the 7th Jerusalem Winter School 1990 on Quantum Cosmology and Baby Universes. arXiv:1805.12246 (2018).</ref><ref name=SchlosshauerReview>{{Cite journal |last=Schlosshauer |first=Maximilian |url=https://link.aps.org/doi/10.1103/RevModPhys.76.1267 |title=Decoherence, the measurement problem, and interpretations of quantum mechanics |journal=Reviews of Modern Physics |date=2005-02-23 |volume=76 |pages=1267–1305 |language=en |doi=10.1103/RevModPhys.76.1267 |issn=0034-6861}}</ref>{{rp|1270|q=Note that von Neumann’s scheme is in sharp contrast to the Copenhagen interpretation, where measurement is not treated as a system-apparatus interaction described by the usual quantum-mechanical formalism, but instead as an independent component of the theory, to be represented entirely in fundamentally classical terms.}} that postulated that there were two processes of wave function change: