Content deleted Content added
Heading added Tags: Reverted Visual edit Mobile edit Mobile web edit |
No edit summary Tag: Reverted |
||
Line 1:
{{Short description|Expression in mathematical analysis}}
* <math>0 \div 0</math>
* <math> {\infty} \div {\infty} </math>
* <math> 0\times\infty </math>
* <math> \
* <math> 0^0 </math>
* <math> 1^\infty </math>
* <math> \infty^0 </math>
* <math> \sqrt[0]{1} </math>
* <math> \sqrt[\infty]{0} </math>
* <math> \sqrt[\infty]{\infty} </math>
* {{math|log<sub>0</sub>(0)}}
* {{math|log<sub>1</sub>(1)}}
* {{math|log<sub>∞</sub>(∞)}}
The most common example of an indeterminate form is the quotient of two functions each of which converges to zero. This indeterminate form is denoted by <math>0/0</math>. For example, as <math>x</math> approaches <math>0
So the fact that two [[function (mathematics)|functions]] <math>f(x)</math> and <math>g(x)</math> converge to <math>0~</math> as <math>x</math> approaches some [[limit point]] <math>c</math> is insufficient to determinate the [[limit of a function|limit]]▼
▲A limit taking one of these indeterminate forms might tend to zero, might tend to any finite value, might tend to infinity, or might diverge, depending on the specific functions involved. A limit which unambiguously tends to infinity, for instance <math display=inline>\lim_{x \to 0} 1/x^2 = \infty,</math> is not considered indeterminate.<ref name=":1">{{Cite web|url=http://mathworld.wolfram.com/Indeterminate.html|title=Indeterminate|last=Weisstein|first=Eric W.|website=mathworld.wolfram.com|language=en|access-date=2019-12-02}}</ref> The term was originally introduced by [[Cauchy]]'s student [[Moigno]] in the middle of the 19th century.
▲The most common example of an indeterminate form is the quotient of two functions each of which converges to zero. This indeterminate form is denoted by <math>0/0</math>. For example, as <math>x</math> approaches <math>0,</math> the ratios <math>x/x^3</math>, <math>x/x</math>, and <math>x^2/x</math> go to <math>\infty</math>, <math>1</math>, and <math>0</math> respectively. In each case, if the limits of the numerator and denominator are substituted, the resulting expression is <math>0/0</math>, which is indeterminate. In this sense, <math>0/0</math> can take on the values <math>0</math>, <math>1</math>, or <math>\infty</math>, by appropriate choices of functions to put in the numerator and denominator. A pair of functions for which the limit is any particular given value may in fact be found. Even more surprising, perhaps, the quotient of the two functions may in fact diverge, and not merely diverge to infinity. For example, <math> x \sin(1/x) / x</math>.
▲So the fact that two [[function (mathematics)|functions]] <math>f(x)</math> and <math>g(x)</math> converge to <math>0</math> as <math>x</math> approaches some [[limit point]] <math>c</math> is insufficient to determinate the [[limit of a function|limit]]
{{block indent|<math> \lim_{x \to c} \frac{f(x)}{g(x)} .</math>}}
An expression that arises by ways other than applying the algebraic limit theorem may have the same form of an indeterminate form. However it is not appropriate to call an expression "indeterminate form" if the expression is made outside the context of determining limits.
For example, <math>0/0</math> which arises from substituting <math>0~</math> for <math>x</math> in the equation <math>f(x)=|x|/(|x-1|-1)</math> is not an indeterminate form since this expression is not made in the determination of a limit (it is in fact undefined as [[division by zero]]).
== Some examples and non-examples ==
Line 52 ⟶ 56:
===Indeterminate form 0<sup>0</sup> ===
{{main|Zero to the power of zero}}
<gallery>
</gallery>
The following limits illustrate that the expression <math>0^0</math> is an indeterminate form:
Thus, in general, knowing that <math>\textstyle\lim_{x \to c} f(x) \;=\; 0</math> and <math>\textstyle\lim_{x \to c} g(x) \;=\; 0</math> is not sufficient to evaluate the limit
{{block indent|<math
If the functions <math>f</math> and <math>g</math> are [[Analytic function|analytic]] at <math>c</math>, and <math>f</math> is positive for <math>x</math> sufficiently close (but not equal) to <math>c</math>, then the limit of <math>f(x)^{g(x)}</math> will be <math>1</math>.<ref>{{cite journal |doi=10.2307/2689754 |author1=Louis M. Rotando |author2=Henry Korn |title=The indeterminate form 0<sup>0</sup> |journal=Mathematics Magazine |date=January 1977 |volume=50 |issue=1 |pages=41–42|jstor=2689754 }}</ref> Otherwise, use the transformation in the [[#List of indeterminate forms|table]] below to evaluate the limit.
Line 73 ⟶ 74:
=== Expressions that are not indeterminate forms ===
The expression <math>1/0</math> is not commonly regarded as an indeterminate form, because if the limit of <math>f/g</math> exists then there is no ambiguity as to its value, as it always diverges. Specifically, if <math>f</math> approaches <math>1</math> and <math>g</math> approaches <math>0
# <math>f/g</math> approaches <math>+\infty</math>
Line 81 ⟶ 82:
In each case the absolute value <math>|f/g|</math> approaches <math>+\infty</math>, and so the quotient <math>f/g</math> must diverge, in the sense of the [[extended real number]]s (in the framework of the [[projectively extended real line]], the limit is the [[Point at infinity|unsigned infinity]] <math>\infty</math> in all three cases<ref name=":3">{{Cite web|url=https://www.cut-the-knot.org/blue/GhostCity.shtml|title=Undefined vs Indeterminate in Mathematics|website=www.cut-the-knot.org|access-date=2019-12-02}}</ref>). Similarly, any expression of the form <math>a/0</math> with <math>a\ne0</math> (including <math>a=+\infty</math> and <math>a=-\infty</math>) is not an indeterminate form, since a quotient giving rise to such an expression will always diverge.
The expression <math>0^\infty</math> is not an indeterminate form. The expression <math>0^{+\infty}</math> obtained from considering <math>\lim_{x \to c} f(x)^{g(x)}</math> gives the limit <math>0
To see why, let <math>L = \lim_{x \to c} f(x)^{g(x)},</math> where <math> \lim_{x \to c} {f(x)}=0,</math> and <math> \lim_{x \to c} {g(x)}=\infty.</math> By taking the natural logarithm of both sides and using <math> \lim_{x \to c} \ln{f(x)}=-\infty,</math> we get that <math>\ln L = \lim_{x \to c} ({g(x)}\times\ln{f(x)})=\infty\times{-\infty}=-\infty,</math> which means that <math>L = {e}^{-\infty}=0.</math>
Line 98 ⟶ 99:
Suppose there are two equivalent infinitesimals <math>\alpha \sim \alpha'</math> and <math>\beta \sim \beta'</math>.
:<math
▲<math display=block>\lim \frac{\beta}{\alpha} = \lim \frac{\beta \beta' \alpha'}{\beta' \alpha' \alpha} = \lim \frac{\beta}{\beta'} \lim \frac{\alpha'}{\alpha} \lim \frac{\beta'}{\alpha'} = \lim \frac{\beta'}{\alpha'}</math>
For the evaluation of the indeterminate form <math>0/0</math>, one can make use of the following facts about equivalent [[infinitesimal]]s (e.g., <math>x\sim\sin x</math> if ''x'' becomes closer to zero):<ref>{{Cite web|url=http://www.vaxasoftware.com/doc_eduen/mat/infiequi.pdf|title=Table of equivalent infinitesimals|website=Vaxa Software}}</ref>
Line 114:
{{block indent|<math>e^x - 1\sim x,</math>}}
{{block indent|<math>(1 + x)^a - 1 \sim ax.</math>}}
For example:
:<math>\begin{align}\lim_{x \to 0} \frac{1}{x^3} \left[\left(\frac{2+\cos x}{3}\right)^x - 1 \right] & = \lim_{x \to 0} \frac{e^{x\ln{\frac{2 + \cos x}{3}}}-1}{x^3} \\ & = \lim_{x \to 0} \frac{1}{x^2} \ln \frac{2+ \cos x}{3} \\ & = \lim_{x \to 0} \frac{1}{x^2} \ln \left(\frac{\cos x -1}{3}+1\right) \\ &= \lim_{x \to 0} \frac{\cos x -1}{3x^2} \\ &= \lim_{x \to 0} -\frac{x^2}{6x^2} \\ & = -\frac{1}{6}\end{align}</math>
In the 2nd equality, <math>e^y - 1 \sim y</math> where <math>y = x\ln{2+\cos x \over 3}</math> as ''y'' become closer to 0 is used, and <math>y \sim \ln {(1+y)}</math> where <math>y = {{\cos x - 1} \over 3}</math> is used in the 4th equality, and <math>1-\cos x \sim {x^2 \over 2}</math> is used in the 5th equality.
Line 197 ⟶ 186:
== References ==
{{reflist}}
{{Calculus topics}}
|