Computing: Difference between revisions

Content deleted Content added
Restored revision 1252156649 by StarryGrandma (talk)
Rithkvsr (talk | contribs)
m Added links
Tags: Reverted canned edit summary Mobile edit Mobile app edit iOS app edit App section source
Line 10:
[[File:ENIAC-changing_a_tube.jpg|thumb|right|alt=Early vacuum tube Turing complete computer|ENIAC, the first programmable general-purpose electronic digital computer]]
 
<ref><!--
== History ==
======[[Anaganaga O Kurraadu|Vijay Vsr]]======
--></ref>kakapo== History ==
{{Main|History of computing}}
{{For timeline}}
Line 18 ⟶ 20:
The first recorded proposal for using digital electronics in computing was the 1931 paper "The Use of Thyratrons for High Speed Automatic Counting of Physical Phenomena" by [[C. E. Wynn-Williams]].<ref>{{Citation | last = Wynn-Williams | first = C. E. | author-link = C. E. Wynn-Williams | title = The Use of Thyratrons for High Speed Automatic Counting of Physical Phenomena | journal = [[Proceedings of the Royal Society A]] | volume = 132 | issue = 819 | pages = 295–310 | date = 2 July 1931 | doi = 10.1098/rspa.1931.0102 |bibcode = 1931RSPSA.132..295W | doi-access = free }}</ref> [[Claude Shannon]]'s 1938 paper "[[A Symbolic Analysis of Relay and Switching Circuits]]" then introduced the idea of using electronics for [[Boolean algebra]]ic operations.
 
The concept of a [[field-effect transistor]] was proposed by [[Julius Edgar Lilienfeld]] in 1925. [[John Bardeen]] and [[Walter Brattain]], while working under [[William Shockley]] at [[Bell Labs]], built the first working [[transistor]], the [[point-contact transistor]], in 1947.<ref name="Lee">{{cite book |last1=Lee |first1=Thomas H. |title=The Design of CMOS Radio-Frequency Integrated Circuits |date=2003 |publisher=[[Cambridge University Press]] |isbn=9781139643771 |url=https://web.stanford.edu/class/archive/ee/ee214/ee214.1032/Handouts/HO2.pdf |access-date=16 September 2019 |archive-date=9 December 2019 |archive-url=https://web.archive.org/web/20191209032130/https://web.stanford.edu/class/archive/ee/ee214/ee214.1032/Handouts/HO2.pdf |url-status=dead }}</ref><ref name="Puers">{{cite book |last1=Puers |first1=Robert |last2=Baldi |first2=Livio |last3=Voorde |first3=Marcel Van de |last4=Nooten |first4=Sebastiaan E. van |title=Nanoelectronics: Materials, Devices, Applications, 2 Volumes |date=2017 |publisher=[[John Wiley & Sons]] |isbn=9783527340538 |page=14 |url=https://books.google.com/books?id=JOqVDgAAQBAJ&pg=PA14}}</ref> In 1953, the [[University of Manchester]] built the first [[transistorized computer]], the [[Manchester Baby]].<ref>{{Citation|last=Lavington|first=Simon|title=A History of Manchester Computers|year=1998|edition=2|publisher=The British Computer Society|___location=Swindon|pages=34–35}}</ref> However, early [[junction transistor]]s were relatively bulky devices that were difficult to mass-produce, which limited them to a number of specialised applications.<ref name="Moskowitzvijayvsr">{{cite book |last1=Moskowitz |first1=Sanford L. |title=Advanced Materials Innovation: Managing Global Technology in the 21st century |date=2016 |publisher=[[John Wiley & Sons]] |isbn=9780470508923 |pages=165–167 |url=https://books.google.com/books?id=2STRDAAAQBAJ&pg=PA165}}</ref>
 
In 1957, Frosch and Derick were able to manufacture the first silicon dioxide field effect transistors at Bell Labs, the first transistors in which drain and source were adjacent at the surface.<ref>{{Cite journal |last1=Frosch |first1=C. J. |last2=Derick |first2=L |date=1957 |title=Surface Protection and Selective Masking during Diffusion in Silicon |url=https://iopscience.iop.org/article/10.1149/1.2428650 |journal=Journal of the Electrochemical Society |language=en |volume=104 |issue=9 |pages=547 |doi=10.1149/1.2428650}}</ref> Subsequently, a team demonstrated a working [[MOSFET]] at Bell Labs 1960.<ref>{{Cite journal |last=KAHNG |first=D. |date=1961 |title=Silicon-Silicon Dioxide Surface Device |url=https://doi.org/10.1142/9789814503464_0076 |journal=Technical Memorandum of Bell Laboratories |pages=583–596 |doi=10.1142/9789814503464_0076 |isbn=978-981-02-0209-5}}</ref><ref>{{Cite book |last=Lojek |first=Bo |title=History of Semiconductor Engineering |date=2007 |publisher=Springer-Verlag Berlin Heidelberg |isbn=978-3-540-34258-8 |___location=Berlin, Heidelberg |page=321}}</ref> The MOSFET made it possible to build [[very large-scale integration|high-density integrated circuits]],<ref name="computerhistory-transistor">{{cite web |title=Who Invented the Transistor? |url=https://www.computerhistory.org/atchm/who-invented-the-transistor/ |website=[[Computer History Museum]] |date=4 December 2013 |access-date=20 July 2019}}</ref><ref name="Hittinger">{{cite journal |last1=Hittinger |first1=William C. |title=Metal-Oxide-Semiconductor Technology |journal=Scientific American |date=1973 |volume=229 |issue=2 |pages=48–59 |issn=0036-8733|jstor=24923169 |doi=10.1038/scientificamerican0873-48 |bibcode=1973SciAm.229b..48H }}</ref> leading to what is known as the [[computer revolution]]<ref>{{cite book|author1-link=Jerry G. Fossum |last1=Fossum |first1=Jerry G. |last2=Trivedi |first2=Vishal P. |title=Fundamentals of Ultra-Thin-Body MOSFETs and FinFETs |date=2013 |publisher=[[Cambridge University Press]] |isbn=9781107434493 |page=vii |url=https://books.google.com/books?id=zZJfAAAAQBAJ&pg=PR7}}</ref> or [[microcomputer revolution]].<ref>{{cite book |last1=Malmstadt |first1=Howard V. |last2=Enke |first2=Christie G. |last3=Crouch |first3=Stanley R. |title=Making the Right Connections: Microcomputers and Electronic Instrumentation |date=1994 |publisher=[[American Chemical Society]] |isbn=9780841228610 |page=389 |url=https://books.google.com/books?id=lyJGAQAAIAAJ |quote=The relative simplicity and low power requirements of MOSFETs have fostered today's microcomputer revolution.}}</ref>