Content deleted Content added
Citation bot (talk | contribs) Altered pages. Add: arxiv, url, issue, doi. Upgrade ISBN10 to 13. | Use this bot. Report bugs. | Suggested by Dominic3203 | Category:Calculus of variations | #UCB_Category 68/73 |
m Open access bot: hdl updated in citation with #oabot. |
||
Line 55:
The boundary term will make it impossible to apply Jeanjean's method. This has led many scholars to explore the problem of normalized solutions on bounded domains in recent years. In addition, there have been a number of interesting results in recent years about normalized solutions in Schrödinger system, [[Choquard equation]], or [[Dirac equation]].<ref>{{Cite journal |last1=Noris |first1=Benedetta |last2=Tavares |first2=Hugo |last3=Verzini |first3=Gianmaria |date=2014 |title=Existence and orbital stability of the ground states with prescribed mass for the L2-critical and supercritical NLS on bounded domains |journal=Anal. PDE |volume=7 |issue=8 |pages=1807–1838 |doi=10.2140/apde.2014.7.1807 |mr=3318740|arxiv=1307.3981 }}</ref>
<ref>{{Cite journal |last1=Bartsch |first1=Thomas |last2=Jeanjean |first2=Louis |last3=Soave |first3=Nicola |date=2016 |title=Normalized solutions for a system of coupled cubic Schrödinger equations on R3 |journal=J. Math. Pures Appl. (9) |volume=106 |issue=4 |pages=583–614 |doi=10.1016/j.matpur.2016.03.004 |mr=3539467|hdl=11311/1007043 |hdl-access=free }}</ref>
<ref>{{Cite journal |last1=Bartsch |first1=Thomas |last2=Liu |first2=Yanyan |last3=Liu |first3=Zhaoli |date=2020 |title=Normalized solutions for a class of nonlinear Choquard equations |journal=Partial Differ. Equ. Appl. |volume=1 |issue=5 |pages=Paper No. 34, 25 pp |doi=10.1007/s42985-020-00036-w |mr=4309842}}</ref>
<ref>{{Cite journal |last=Nolasco |first=Margherita |date=2021 |title=A normalized solitary wave solution of the Maxwell-Dirac equations |journal=Ann. Inst. H. Poincaré C Anal. Non Linéaire |volume=38 |issue=6 |pages=1681–1702 |doi=10.1016/j.anihpc.2020.12.006 |arxiv=2010.14310 |mr=4327893}}</ref>
|