Plancherel theorem: Difference between revisions

Content deleted Content added
gave a sketch of the proof
mNo edit summary
Line 14:
A more precise formulation is that if a function is in both [[Lp space|''L''<sup>''p''</sup> spaces]] <math>L^1(\mathbb{R})</math> and <math>L^2(\mathbb{R})</math>, then its Fourier transform is in <math>L^2(\mathbb{R})</math> and the Fourier transform is an [[isometry]] with respect to the ''L''<sup>2</sup> norm. This implies that the Fourier transform restricted to <math>L^1(\mathbb{R}) \cap L^2(\mathbb{R})</math> has a unique extension to a [[Linear isometry|linear isometric map]] <math>L^2(\mathbb{R}) \mapsto L^2(\mathbb{R})</math>, sometimes called the Plancherel transform. This isometry is actually a [[unitary operator|unitary]] map. In effect, this makes it possible to speak of Fourier transforms of [[quadratically integrable function]]s.
 
A proof of the theorem is available from ''Rudin (1987, Chapter 9)''. The basic idea is to prove it for [[Gaussian distribution]]s, and then use density. But a standard [[Gaussian distribution]] is transformed to itself under the Fourier transformation, and the theorem is trivial in that case. Finally, the standard transformation properties of the Fourier transform then imply Plancherel for all Gaussians.
 
Plancherel's theorem remains valid as stated on ''n''-dimensional [[Euclidean space]] <math>\mathbb{R}^n</math>. The theorem also holds more generally in [[locally compact abelian group]]s. There is also a version of the Plancherel theorem which makes sense for non-commutative locally compact groups satisfying certain technical assumptions. This is the subject of [[non-commutative harmonic analysis]].