Quantum inverse scattering method: Difference between revisions

Content deleted Content added
Added {{Cleanup rewrite}} and {{More citations needed}} tags
m fix link to correlation function to link to the statmech one
 
Line 21:
An important concept in the [[inverse scattering transform]] is the [[Lax pair|Lax representation]]. The quantum inverse scattering method starts by the [[quantization (physics)|quantization]] of the Lax representation and reproduces the results of the Bethe ansatz. In fact, it allows the Bethe ansatz to be written in a new form: the ''algebraic Bethe ansatz''.<ref>See for example lectures by N.A. Slavnov {{arXiv|1804.07350}}</ref> This led to further progress in the understanding of quantum [[integrable system]]s, such as the [[quantum Heisenberg model]], the quantum [[nonlinear Schrödinger equation]] (also known as the [[Lieb–Liniger model]] or the [[Tonks–Girardeau gas]]) and the [[Hubbard model]].{{Citation needed|date=September 2024}}
 
The theory of [[correlationCorrelation function (statistical mechanics)|correlation functions]]s was developed{{when|date=November 2015}}, relating determinant representations, descriptions by differential equations and the [[Riemann–Hilbert problem]]. Asymptotics of correlation functions which include space, time and temperature dependence were evaluated in 1991.{{Citation needed|date=September 2024}}
 
Explicit expressions for the higher [[conservation law]]s of the integrable models were obtained in 1989.{{Citation needed|date=September 2024}}