Content deleted Content added
reformatting in TeX notation |
fmt |
||
Line 13:
The function is defined by making use of the [[Smith–Volterra–Cantor set]] and an infinite number or "copies" of the function defined by
:<math>f(x) = \begin{cases} x^2 \sin(1/x), & x \ne 0 \\ 0, & x = 0.\end{cases}</math>
The construction of ''V'' begins by determining the largest value of ''x'' in the interval [0, 1/8] for which ''f'' ′(''x'') = 0. Once this value (say ''x''<sub>0</sub>) is determined, extend the function to the right with a constant value of ''f''(''x''<sub>0</sub>) up to and including the point 1/8. Once this is done, a mirror image of the function can be created starting at the point 1/4 and extending downward towards 0. This function will be defined to be 0 outside of the interval [0, 1/4]. We then translate this function to the interval [3/8, 5/8] so that the resulting function, which we call ''f''<sub>1</sub>, is nonzero only on the middle interval of the complement of the Smith–Volterra–Cantor set.
To construct ''f''<sub>2</sub>, ''f'' ′ is then considered on the smaller interval [0,1/32], truncated at the last place the derivative is zero, extended, and mirrored the same way as before, and two translated copies of the resulting function are added to ''f''<sub>1</sub> to produce the function ''f''<sub>2</sub>. Volterra's function then results by repeating this procedure for every interval removed in the construction of the Smith–Volterra–Cantor set; in other words, the function ''V'' is the limit of the sequence of functions ''f''<sub>1</sub>, ''f''<sub>2</sub>, ... ==Further properties==
|