Content deleted Content added
XOR'easter (talk | contribs) m lowercase terms that aren't proper nouns |
clean up some citations, some math formatting |
||
Line 3:
{{Orphan|date=November 2024}}
'''Locally recoverable codes''' are a family of [[error correction code]]s that were introduced first by D. S. Papailiopoulos and A. G. Dimakis<ref>{{Citation
|first1=Dimitris S.|last1=Papailiopoulos |first2=Alexandros G. |last2=Dimakis |
|first1=A.
|last1=Barg
Line 10:
|first3=S.
|last3=Vlăduţ
|
|pages=1252–1256
|___location=Hong Kong, China
|
|date=2015
|doi=10.1109/ISIT.2015.7282656
Line 24 ⟶ 23:
|first2=A.
|last2=Mazumdar
|title=
|pages=5787–5794
|journal=IEEE Transactions on Information Theory
Line 38 ⟶ 37:
|first3=G.
|last3=Micheli
|title=
|journal=Designs, Codes and Cryptography
|pages=1427–1436
Line 52 ⟶ 51:
|first3=G.
|last3=Matthews
|title=
|date=2022
|doi=10.3934/amc.2018020
Line 72 ⟶ 71:
'''Theorem'''<ref>{{Citation
|first1=V. |last1=Cadambe |first2=A. |last2=Mazumdar |
An <math>[n, k, d, r]_{q}</math>-LRC <math>C</math> is said to be optimal if the minimum [[Hamming distance|distance]] of <math>C</math> satisfies <div style="text-align: center;"><math>d = n - k - \left\lceil\frac{k}{r}\right\rceil + 2</math></div>
Line 78 ⟶ 77:
== Tamo–Barg codes ==
Let <math>f
:• <math>f</math> has [[Degree of a polynomial|degree]] <math>r+1</math>,
:• there exist distinct [[subset]]s <math>A_{1}
::– for any <math>i \in \{1, \ldots, \ell\}</math>, <math>f
::–
::– <math>A_{i}
We say that {<math>A_{1},\ldots,A_{\ell}</math>} is a splitting covering for <math>f</math>.<ref>{{Citation |first1=G.
Line 97 ⟶ 96:
The Tamo–Barg construction utilizes good polynomials.<ref>{{Citation
|first1=I.|last1=Tamo |first2=A. |last2=Barg |
:• Suppose that a <math>(r, \ell)</math>-good polynomial <math>f(x)</math> over <math>\mathbb F_{q}</math> is given with splitting covering <math>i \in \{1, \ldots, \ell\}</math>.
:• Let <math>s
:• Consider the following <math>\mathbb F_{q}</math>
:• Let <math>T</math> = <math display="inline">\bigcup_{i=1}^\ell A_i</math>
:• The code <math> \{ ev_{T}(g):g \in V \}</math> is an <math>((r+1)\ell,(s+1)r,d,r)</math>
=== Parameters of Tamo–Barg codes ===
|