Loss functions for classification: Difference between revisions

Content deleted Content added
m Tangent loss: Changed multiple brackets to \left( \right) brackets for more readable bracket heights.
Line 168:
:<math>
\begin{align}
\phi(v) & = C[f^{-1}(v)]+\left( 1-f^{-1}(v)\right) C'[f^{-1}(v)] = 4 \left( \arctan(v)+\frac{1}{2} \right) (1-(\arctan(v)+\frac{1}{2}))+(1-(\arctan(v)+\frac{1}{2}))(4-8(\arctan(v)+\frac{1}{2}))\\
& = (2\arctan(v)-1)^2.
\end{align}
Line 177:
The minimizer of <math>I[f]</math> for the Tangent loss function can be directly found from equation (1) as
 
:<math>f^*_\text{Tangent}= \tan \left( \eta-\frac{1}{2} \right) =\tan \left( p \left( 1\mid x \right) -\frac{1}{2}\right) .</math>
 
== Hinge loss ==