Stochastic approximation: Difference between revisions

Content deleted Content added
Line 29:
Let <math>N(\theta) := \theta - X</math>, then the unique solution to <math display="inline">\operatorname E[N(\theta)] = 0</math> is the desired mean <math>\theta^*</math>. The RM algorithm gives us<math display="block">\theta_{n+1}=\theta_n - a_n(\theta_n - X_n) </math>This is equivalent to [[stochastic gradient descent]] with loss function <math>L(\theta) = \frac 12 \|X - \theta\|^2 </math>.
 
In general, if there exists some function <math>L</math> such that <math>\nabla L(\theta) = N(\theta) - \alpha </math>, then the Robbins–Monro algorithm is equivalent to stochastic gradient descent with loss function <math>L(\theta)</math>. However, the RM algorithm does not require <math>L</math> to exist in order to converge.
 
===Complexity results===