Content deleted Content added
m →Newton–Raphson solution method: fix more "display=block" from colons |
Citation bot (talk | contribs) Added bibcode. | Use this bot. Report bugs. | Suggested by BorgQueen | Category:Power engineering | #UCB_Category 30/53 |
||
Line 10:
A load flow study is especially valuable for a system with multiple load centers, such as a refinery complex. The power-flow study is an analysis of the system’s capability to adequately supply the connected load. The total system losses, as well as individual line losses, also are tabulated. Transformer tap positions are selected to ensure the correct voltage at critical locations such as motor control centers. Performing a load-flow study on an existing system provides insight and recommendations as to the system operation and optimization of control settings to obtain maximum capacity while minimizing the operating costs. The results of such an analysis are in terms of active power, reactive power, voltage magnitude and phase angle. Furthermore, power-flow computations are crucial for [[Unit commitment problem in electrical power production|optimal operations of groups of generating units]].
In term of its approach to uncertainties, load-flow study can be divided to deterministic load flow and uncertainty-concerned load flow. Deterministic load-flow study does not take into account the uncertainties arising from both power generations and load behaviors. To take the uncertainties into consideration, there are several approaches that has been used such as probabilistic, possibilistic, information gap decision theory, robust optimization, and interval analysis.<ref>{{Cite journal|title=A comprehensive review on uncertainty modeling techniques in power system studies|journal=Renewable and Sustainable Energy Reviews|volume=57|pages=1077–1089|doi=10.1016/j.rser.2015.12.070|year=2016|last1=Aien|first1=Morteza|last2=Hajebrahimi|first2=Ali|last3=Fotuhi-Firuzabad|first3=Mahmud|bibcode=2016RSERv..57.1077A }}</ref>
==Model==
|