Cobweb plot: Difference between revisions

Content deleted Content added
Moved commons link to external links section
Tags: Visual edit Mobile edit Mobile web edit Advanced mobile edit
m Function
Tags: Visual edit Mobile edit Mobile web edit
Line 1:
{{refimprove|date=August 2014}}
[[Image:CobwebConstruction.gif|thumb|upright=1.2|Construction of a cobweb plot of the logistic map y = x^2.8 x (1-x)+3, showing an attracting fixed point.]]
[[Image:LogisticCobwebChaos.gif|thumb|upright=1.2|An animated cobweb diagram of the [[logistic map]] y = r x (1-x), showing [[chaos theory|chaotic]] behaviour for most values of r > 3.57.]]
A '''cobweb plot''', known also as '''Lémeray Diagram''' or '''Verhulst diagram''' is a visual tool used in the [[dynamical system]]s field of [[mathematics]] to investigate the qualitative behaviour of one-dimensional [[iterated function]]s, such as the [[logistic map]]. The technique was introduced in the 1890s by E.-M. Lémeray.<ref>{{Cite journal |last=Lémeray |first=E.-M. |date=1897 |title=Sur la convergence des substitutions uniformes. |url=http://www.numdam.org/item/NAM_1898_3_17__75_1.pdf |journal=Nouvelles annales de mathématiques, 3e série. |volume=16 |pages=306–319}}</ref> Using a cobweb plot, it is possible to infer the long term status of an [[initial condition]] under repeated application of a map.<ref name="stoop">{{cite book |last1=Stoop |first1= Ruedi |last2=Steeb |first2= Willi-Hans |date=2006 |title=Berechenbares Chaos in dynamischen Systemen |trans-title=Computable Chaos in dynamic systems |language=german |publisher=Birkhäuser Basel| page=8 |isbn=978-3-7643-7551-5 |doi= 10.1007/3-7643-7551-5 }}</ref>