Content deleted Content added
Line 64:
==Definition==
Let <math>C</math> be a <math>[n, k, d]_{q}</math> [[linear code]]. For <math>i \in \{1, \ldots, n\}</math>, let us denote by <math>r_{i}</math> the minimum number of other [[Coordinate system|coordinates]] we have to look at to recover an erasure in [[Coordinate system|coordinate]] <math>i</math>. The number <math>
An <math>[n, k, d, r]_{q}</math> ''locally recoverable code'' (LRC) is an <math>[n, k, d]
Let <math>C</math> be an <math>[n, k, d]
|first1=Dimitris S.|last1=Papailiopoulos |first2=Alexandros G. |last2=Dimakis |contribution=Locally repairable codes |pages=2771–2775 |___location=Cambridge, MA, USA |title=2012 IEEE International Symposium on Information Theory |date=2012 |doi=10.1109/ISIT.2012.6284027|isbn=978-1-4673-2579-0 |arxiv=1206.3804 }}</ref> i.e. for every <math>i \in \{1, \ldots, n\}</math>, the space of [[linear equation]]s of the code contains [[Element (mathematics)|elements]] of the form <math>
==Optimal locally recoverable codes==
|