Exponential-Golomb coding: Difference between revisions

Content deleted Content added
References: Category
m add WP:TEMPLATECAT to remove from template; genfixes
Line 17:
In the above examples, consider the case 3. For 3, x+1 = 3 + 1 = 4. 4 in binary is '100'. '100' has 3 bits, and 3-1 = 2. Hence add 2 zeros before '100', which is '00100'
 
Similarly, consider 8. '8 + 1' in binary is '1001'. '1001' has 4 bits, and 4-1 is 3. Hence add 3 zeros before 1001, which is '0001001'.
 
This is identical to the [[Elias gamma code]] of ''x''+1, allowing it to encode 0.<ref>{{cite book |last = Rupp |first = Markus |title = Video and Multimedia Transmissions over Cellular Networks: Analysis, Modelling and Optimization in Live 3G Mobile Networks |year = 2009 |publisher = Wiley |pages = 149 |isbn = 9780470747766 |url = https://books.google.com/books?id=H9hUBT-JvUoC&q=Exponential-Golomb+coding&pg=PA149 }}</ref>
Line 32:
4 ⇒ 7 ⇒ 1000 ⇒ 0001000
−4 ⇒ 8 ⇒ 1001 ⇒ 0001001
...<ref name="richardson">{{cite book |last = Richardson |first = Iain |title = The H.264 Advanced Video Compression Standard |year = 2010 |publisher = Wiley |isbn = 978-0-470-51692-8 |pages = 208, 221 |url = https://books.google.com/books?id=LJoDiPnBzQ8C&q=Exponential-Golomb+coding&pg=PA221 }}</ref>
 
In other words, a non-positive integer ''x''≤0 is mapped to an even integer −2''x'', while a positive integer ''x''&gt;0 is mapped to an odd integer 2''x''−1.
Line 109:
[[Category:Entropy coding]]
[[Category:Numeral systems]]
[[Category:Data compression]]