Content deleted Content added
m Fixing broken anchor: Remove 1 notification (When checking links to John von Neumann) |
No edit summary |
||
Line 35:
#** If <math>u > \alpha</math>, then ''reject'' the candidate and set <math>x_{t+1} = x_t</math> instead.
This algorithm proceeds by randomly attempting to move about the sample space, sometimes accepting the moves and sometimes remaining in place. <math>P(x)</math> at specific <math>x</math> is proportional to the time spent on <math>x</math> by the algorithm. Note that the acceptance ratio <math>\alpha</math> indicates how probable the new proposed sample is with respect to the current sample, according to the distribution whose density is <math>P(x)</math>. If we attempt to move to a point that is more probable than the existing point (i.e. a point in a higher-density region of <math>P(x)</math> corresponding to an <math>\alpha > 1 \ge u</math>), we will always accept the move. However, if we attempt to move to a less probable point, we will sometimes reject the move, and the larger the relative drop in probability, the more likely we are to reject the new point. Thus, we will tend to stay in (and return large numbers of samples from) high-density regions of <math>P(x)</math>, while only occasionally visiting low-density regions.
Compared with an algorithm like [[adaptive rejection sampling]]<ref name=":0">{{Cite journal |last1=Gilks |first1=W. R. |last2=Wild |first2=P. |date=1992-01-01 |title=Adaptive Rejection Sampling for Gibbs Sampling |journal=Journal of the Royal Statistical Society. Series C (Applied Statistics) |volume=41 |issue=2 |pages=337–348 |doi=10.2307/2347565 |jstor=2347565}}</ref> that directly generates independent samples from a distribution, Metropolis–Hastings and other MCMC algorithms have a number of disadvantages:
|