Content deleted Content added
Will Orrick (talk | contribs) →Theorem two: Move links to earlier occurrences. Theorem two now states the binomial coefficient formula, for those not familiar with multisets and multichoose. |
Will Orrick (talk | contribs) Removed problemetic statement about negative binomial distribution from the introduction. "Problematic" for a number of reasons: not suitable for the the introduction; not clear how it relates to the counting method of this article; "different support ranges" unclear; a theorem is not a coefficient. |
||
Line 2:
In [[combinatorics]], '''stars and bars''' (also called "sticks and stones",<ref>{{Cite book|last=Batterson|first=J|title=Competition Math for Middle School|publisher=Art of Problem Solving}}</ref> "balls and bars",<ref>{{cite book|last1=Flajolet|first1=Philippe|last2=Sedgewick|first2=Robert|date=June 26, 2009|title=Analytic Combinatorics|publisher=Cambridge University Press|isbn = 978-0-521-89806-5}}</ref> and "dots and dividers"<ref name=":0">{{Cite web|title=Art of Problem Solving|url=https://artofproblemsolving.com/wiki/index.php/Ball-and-urn|access-date=2021-10-26|website=artofproblemsolving.com}}</ref>) is a graphical aid for deriving certain [[combinatorial]] theorems. It can be used to solve many simple [[combinatorial enumeration|counting problems]], such as how many ways there are to put {{mvar|n}} indistinguishable balls into {{mvar|k}} distinguishable bins.<ref>{{cite book |last=Feller |first=William |author-link=William Feller |year=1968 |title=An Introduction to Probability Theory and Its Applications |publisher=Wiley |volume=1 |edition=3rd |page=38}}</ref>
==Statements of theorems==
|